Implement commitment and proof generation

This commit is contained in:
Daniel Sanchez Quiros 2024-02-20 13:02:55 +01:00
parent 12f33c3388
commit 37d94d1c87
1 changed files with 51 additions and 0 deletions

51
da/kzg_rs/kzg.py Normal file
View File

@ -0,0 +1,51 @@
from functools import reduce
from itertools import batched
from typing import Sequence
from eth2spec.deneb.mainnet import bytes_to_bls_field, BLSFieldElement, KZGCommitment as Commitment, KZGProof as Proof
from eth2spec.utils import bls
from numpy import inf
from .common import BYTES_PER_FIELD_ELEMENT, G1, BLS_MODULUS
from .poly import Polynomial
def bytes_to_polynomial(b: bytearray) -> Polynomial:
"""
Convert bytes to list of BLS field scalars.
"""
assert len(b) % BYTES_PER_FIELD_ELEMENT == 0
return Polynomial([int(bytes_to_bls_field(b)) for b in batched(b, int(BYTES_PER_FIELD_ELEMENT))])
def g1_linear_combination(polynomial: Polynomial[BLSFieldElement], global_parameters: Sequence[G1]) -> Commitment:
"""
BLS multiscalar multiplication.
"""
# we assert to have more points available than elements,
# this is dependent on the available kzg setup size
assert len(polynomial) <= len(global_parameters)
point = reduce(
bls.add,
(bls.multiply(g, p) for g, p in zip(global_parameters, polynomial.coef)),
bls.Z1()
)
return Commitment(bls.G1_to_bytes48(point))
def bytes_to_commitment(b: bytearray, global_parameters: Sequence[G1]) -> Commitment:
poly = bytes_to_polynomial(b)
return g1_linear_combination(poly, global_parameters)
def generate_element_proof(
element: BLSFieldElement,
polynomial: Polynomial,
global_parameters: Sequence[G1]
) -> Proof:
# compute a witness polynomial in that satisfies `witness(x) = (f(x)-v)/(x-u)`
f_x_v = polynomial - Polynomial([polynomial.eval(int(element)) % BLS_MODULUS])
x_u = Polynomial([-element, BLSFieldElement(1)])
witness = f_x_v // x_u
witness = Polynomial(list(BLSFieldElement(int(x) % BLS_MODULUS) for x in reversed(witness) if x != inf))
return g1_linear_combination(witness, global_parameters)