Merge branch 'da-poc-tests' into da-poc

This commit is contained in:
holisticode 2024-07-19 11:34:02 -05:00
commit 30ea9f9de4
3 changed files with 289 additions and 6 deletions

View File

@ -15,5 +15,7 @@ DEFAULT_DATA_SIZE = 1024
DEFAULT_SUBNETS = 256
DEFAULT_NODES = 32
DEFAULT_SAMPLE_THRESHOLD = 12
# how many nodes per subnet minimum
DEFAULT_REPLICATION_FACTOR = 4
DEBUG = False

View File

@ -2,11 +2,8 @@ from random import randint
from constants import *
# how many nodes per subnet minimum
REPLICATION_FACTOR = 4
def calculate_subnets(node_list, num_subnets):
def calculate_subnets(node_list, num_subnets, replication_factor):
"""
Calculate in which subnet(s) to place each node.
This PoC does NOT require this to be analyzed,
@ -45,7 +42,7 @@ def calculate_subnets(node_list, num_subnets):
i += 1
# if not each subnet has at least factor number of nodes, fill up
if listlen < REPLICATION_FACTOR * num_subnets:
if listlen < replication_factor * num_subnets:
for subnet in subnets:
last = subnets[subnet][len(subnets[subnet]) - 1].get_id()
idx = -1
@ -54,7 +51,7 @@ def calculate_subnets(node_list, num_subnets):
if n.get_id() == last:
idx = j + 1
# fill up until factor
while len(subnets[subnet]) < REPLICATION_FACTOR:
while len(subnets[subnet]) < replication_factor:
# wrap index if at end
if idx > len(node_list) - 1:
idx = 0

284
da/network/tests.py Normal file
View File

@ -0,0 +1,284 @@
import argparse
import sys
import time
from random import randint
import multiaddr
import trio
from constants import *
from executor import Executor
from libp2p.peer.peerinfo import info_from_p2p_addr
from network import DANetwork
from subnet import calculate_subnets
"""
Entry point for the poc.
Handles cli arguments, initiates the network
and waits for it to complete.
Also does some simple completion check.
"""
async def run_network(params):
"""
Create the network.
Run the run_subnets
"""
num_nodes = int(params.nodes)
net = DANetwork(num_nodes)
shutdown = trio.Event()
disperse_send, disperse_recv = trio.open_memory_channel(0)
async with trio.open_nursery() as nursery:
nursery.start_soon(net.build, nursery, shutdown, disperse_send)
nursery.start_soon(
run_subnets, net, params, nursery, shutdown, disperse_send, disperse_recv
)
async def run_subnets(net, params, nursery, shutdown, disperse_send, disperse_recv):
"""
Run the actual PoC logic.
Calculate the subnets.
-> Establish connections based on the subnets <-
Runs the executor.
Runs simulated sampling.
Runs simple completion check
"""
num_nodes = int(params.nodes)
num_subnets = int(params.subnets)
data_size = int(params.data_size)
sample_threshold = int(params.sample_threshold)
fault_rate = int(params.fault_rate)
replication_factor = int(params.replication_factor)
while len(net.get_nodes()) != num_nodes:
print("nodes not ready yet")
await trio.sleep(0.1)
print("Nodes ready")
nodes = net.get_nodes()
subnets = calculate_subnets(nodes, num_subnets, replication_factor)
await print_subnet_info(subnets)
print("Establishing connections...")
node_list = {}
all_node_instances = set()
await establish_connections(subnets, node_list, all_node_instances, fault_rate)
print("Starting executor...")
exe = Executor.new(EXECUTOR_PORT, node_list, num_subnets, data_size)
print("Start dispersal and wait to complete...")
print("depending on network and subnet size this may take a while...")
global TIMESTAMP
TIMESTAMP = time.time()
async with trio.open_nursery() as subnursery:
subnursery.start_soon(wait_disperse_finished, disperse_recv, num_subnets)
subnursery.start_soon(exe.disperse, nursery)
subnursery.start_soon(disperse_watcher, disperse_send.clone())
print()
print()
print("OK. Start sampling...")
checked = []
for _ in range(sample_threshold):
nursery.start_soon(sample_node, exe, subnets, checked)
print("Waiting for sampling to finish...")
await check_complete(checked, sample_threshold)
print_connections(all_node_instances)
print("Test completed")
shutdown.set()
TIMESTAMP = time.time()
def print_connections(node_list):
for n in node_list:
for p in n.net_iface().get_peerstore().peer_ids():
if p == n.net_iface().get_id():
continue
print("node {} is connected to {}".format(n.get_id(), p))
print()
async def disperse_watcher(disperse_send):
while time.time() - TIMESTAMP < 5:
await trio.sleep(1)
await disperse_send.send(9999)
print("canceled")
async def wait_disperse_finished(disperse_recv, num_subnets):
# the executor will be sending a packet
# num_subnets times right away
sends = num_subnets
recvs = 0
async for value in disperse_recv:
if value == 9999:
print("dispersal finished")
return
print(".", end="")
if value < 0:
recvs += 1
else:
sends += 1
global TIMESTAMP
TIMESTAMP = time.time()
# print(sends)
# print(recvs)
# if sends == recvs:
# disperse_recv.close()
# print("close")
# return
async def print_subnet_info(subnets):
"""
Print which node is in what subnet
"""
print()
print("By subnets: ")
for subnet in subnets:
print("subnet: {} - ".format(subnet), end="")
for n in subnets[subnet]:
print(n.get_id().pretty()[:16], end=", ")
print()
print()
print()
async def establish_connections(subnets, node_list, all_node_instances, fault_rate=0):
"""
Each node in a subnet connects to the other ones in that subnet.
"""
for subnet in subnets:
# n is a DANode
for n in subnets[subnet]:
# while nodes connect to each other, they are **mutually** added
# to their peer lists. Hence, we don't need to establish connections
# again to peers we are already connected.
# So in each iteration we get the peer list for the current node
# to later check if we are already connected with the next peer
this_nodes_peers = n.net_iface().get_peerstore().peer_ids()
all_node_instances.add(n)
faults = []
for i in range(fault_rate):
faults.append(randint(0, len(subnets[subnet])))
for i, nn in enumerate(subnets[subnet]):
# don't connect to self
if nn.get_id() == n.get_id():
continue
if i in faults:
continue
remote_id = nn.get_id().pretty()
remote_port = nn.get_port()
# this script only works on localhost!
addr = "/ip4/127.0.0.1/tcp/{}/p2p/{}/".format(remote_port, remote_id)
remote_addr = multiaddr.Multiaddr(addr)
remote = info_from_p2p_addr(remote_addr)
if subnet not in node_list:
node_list[subnet] = []
node_list[subnet].append(remote)
# check if we are already connected with this peer. If yes, skip connecting
if nn.get_id() in this_nodes_peers:
continue
if DEBUG:
print("{} connecting to {}...".format(n.get_id(), addr))
await n.net_iface().connect(remote)
print()
async def check_complete(checked, sample_threshold):
"""
Simple completion check:
Check how many nodes have already been "sampled"
"""
while len(checked) < sample_threshold:
await trio.sleep(0.5)
print("check_complete exiting")
return
async def sample_node(exe, subnets, checked):
"""
Pick a random subnet.
Pick a random node in that subnet.
As the executor has a list of hashes per subnet,
we can ask that node if it has that hash.
"""
# s: subnet
s = randint(0, len(subnets) - 1)
# n: node (index)
n = randint(0, len(subnets[s]) - 1)
# actual node
node = subnets[s][n]
# pick the hash to check
hashstr = exe.get_hash(s)
# run the "sampling"
has = await node.has_hash(hashstr)
if has:
print("node {} has hash {}".format(node.get_id().pretty(), hashstr))
else:
print("node {} does NOT HAVE hash {}".format(node.get_id().pretty(), hashstr))
print("TEST FAILED")
# signal we "sampled" another node
checked.append(1)
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-s", "--subnets", help="Number of subnets [default: 256]")
parser.add_argument("-n", "--nodes", help="Number of nodes [default: 32]")
parser.add_argument(
"-t",
"--sample-threshold",
help="Threshold for sampling request attempts [default: 12]",
)
parser.add_argument("-d", "--data-size", help="Size of packages [default: 1024]")
parser.add_argument("-f", "--fault_rate", help="Fault rate [default: 0]")
parser.add_argument(
"-r", "--replication_factor", help="Replication factor [default: 4]"
)
args = parser.parse_args()
if not args.subnets:
args.subnets = DEFAULT_SUBNETS
if not args.nodes:
args.nodes = DEFAULT_NODES
if not args.sample_threshold:
args.sample_threshold = DEFAULT_SAMPLE_THRESHOLD
if not args.data_size:
args.data_size = DEFAULT_DATA_SIZE
if not args.replication_factor:
args.replication_factor = DEFAULT_REPLICATION_FACTOR
if not args.fault_rate:
args.fault_rate = 0
print("Number of subnets will be: {}".format(args.subnets))
print("Number of nodes will be: {}".format(args.nodes))
print("Size of data package will be: {}".format(args.data_size))
print("Threshold for sampling attempts will be: {}".format(args.sample_threshold))
print("Fault rate will be: {}".format(args.fault_rate))
print()
print("*******************")
print("Starting network...")
trio.run(run_network, args)