nomos-specs/cryptarchia/cryptarchia.py

404 lines
12 KiB
Python
Raw Normal View History

from typing import TypeAlias, List, Optional
from hashlib import sha256, blake2b
2024-01-24 11:52:30 +00:00
# Please note this is still a work in progress
2024-02-01 09:56:49 +00:00
from dataclasses import dataclass, field
2024-01-24 11:52:30 +00:00
Id: TypeAlias = bytes
2024-01-24 11:52:30 +00:00
@dataclass
class Epoch:
# identifier of the epoch, counting incrementally from 0
epoch: int
@dataclass
class TimeConfig:
# How many slots in a epoch, all epochs will have the same number of slots
slots_per_epoch: int
# How long a slot lasts in seconds
slot_duration: int
# Start of the first epoch, in unix timestamp second precision
chain_start_time: int
@dataclass
class Config:
k: int
active_slot_coeff: float # 'f', the rate of occupied slots
time: TimeConfig
@property
def s(self):
return int(3 * self.k / self.active_slot_coeff)
2024-01-24 11:52:30 +00:00
# An absolute unique indentifier of a slot, counting incrementally from 0
@dataclass
class Slot:
absolute_slot: int
def from_unix_timestamp_s(config: TimeConfig, timestamp_s: int) -> "Slot":
absolute_slot = (timestamp_s - config.chain_start_time) // config.slot_duration
2024-01-24 11:52:30 +00:00
return Slot(absolute_slot)
def epoch(self, config: TimeConfig) -> Epoch:
return self.absolute_slot // config.slots_per_epoch
@dataclass
class Coin:
pk: int
value: int
def commitment(self) -> Id:
# TODO: mocked until CL is understood
pk_bytes = int.to_bytes(self.pk, length=32, byteorder="little")
value_bytes = int.to_bytes(self.value, length=32, byteorder="little")
h = sha256()
h.update(pk_bytes)
h.update(value_bytes)
return h.digest()
def nullifier(self) -> Id:
# TODO: mocked until CL is understood
pk_bytes = int.to_bytes(self.pk, length=32, byteorder="little")
value_bytes = int.to_bytes(self.value, length=32, byteorder="little")
h = sha256()
h.update(pk_bytes)
h.update(value_bytes)
h.update(b"\x00") # extra 0 byte to differentiate from commitment
return h.digest()
2024-01-24 11:52:30 +00:00
2024-02-01 09:56:49 +00:00
@dataclass
class MockLeaderProof:
commitment: Id
nullifier: Id
@staticmethod
def from_coin(coin: Coin):
return MockLeaderProof(commitment=coin.commitment(), nullifier=coin.nullifier())
def verify(self, slot):
2024-02-01 09:56:49 +00:00
# TODO: verification not implemented
return True
2024-01-24 11:52:30 +00:00
@dataclass
class BlockHeader:
slot: Slot
parent: Id
content_size: int
content_id: Id
2024-02-01 09:56:49 +00:00
leader_proof: MockLeaderProof
# **Attention**:
# The ID of a block header is defined as the 32byte blake2b hash of its fields
# as serialized in the format specified by the 'HEADER' rule in 'messages.abnf'.
#
# The following code is to be considered as a reference implementation, mostly to be used for testing.
def id(self) -> Id:
h = blake2b(digest_size=32)
# version byte
h.update(b"\x01")
# content size
h.update(int.to_bytes(self.content_size, length=4, byteorder="big"))
# content id
assert len(self.content_id) == 32
h.update(self.content_id)
# slot
h.update(int.to_bytes(self.slot.absolute_slot, length=8, byteorder="big"))
# parent
assert len(self.parent) == 32
h.update(self.parent)
2024-02-01 09:56:49 +00:00
# leader proof
assert len(self.leader_proof.commitment) == 32
h.update(self.leader_proof.commitment)
assert len(self.leader_proof.nullifier) == 32
h.update(self.leader_proof.nullifier)
2024-02-01 09:56:49 +00:00
return h.digest()
2024-01-24 11:52:30 +00:00
@dataclass
2024-01-24 11:52:30 +00:00
class Chain:
blocks: List[BlockHeader]
def tip(self) -> BlockHeader:
return self.blocks[-1]
def length(self) -> int:
return len(self.blocks)
def contains_block(self, block: BlockHeader) -> bool:
return block in self.blocks
2024-01-24 11:52:30 +00:00
def block_position(self, block: BlockHeader) -> int:
assert self.contains_block(block)
for i, b in enumerate(self.blocks):
2024-01-24 11:52:30 +00:00
if b == block:
return i
2024-02-01 09:56:49 +00:00
@dataclass
class LedgerState:
"""
A snapshot of the ledger state up to some block
"""
block: Id = None
nonce: Id = None
2024-02-01 09:56:49 +00:00
total_stake: int = None
commitments: set[Id] = field(default_factory=set) # set of commitments
nullifiers: set[Id] = field(default_factory=set) # set of nullified
def copy(self):
return LedgerState(
block=self.block,
nonce=self.nonce,
total_stake=self.total_stake,
commitments=self.commitments.copy(),
nullifiers=self.nullifiers.copy(),
)
def verify_committed(self, commitment: Id) -> bool:
return commitment in self.commitments
def verify_unspent(self, nullifier: Id) -> bool:
return nullifier not in self.nullifiers
def apply(self, block: BlockHeader):
assert block.parent == self.block
self.block = block.id()
self.nullifiers.add(block.leader_proof.nullifier)
2024-02-01 09:56:49 +00:00
2024-01-24 11:52:30 +00:00
class Follower:
2024-02-01 09:56:49 +00:00
def __init__(self, genesis_state: LedgerState, config: Config):
2024-01-24 11:52:30 +00:00
self.config = config
self.forks = []
2024-02-01 09:56:49 +00:00
self.local_chain = Chain([])
self.epoch = EpochState(
stake_distribution_snapshot=genesis_state,
nonce_snapshot=genesis_state,
)
2024-02-01 16:25:49 +00:00
self.genesis_state = genesis_state
self.ledger_state = genesis_state.copy()
2024-01-24 11:52:30 +00:00
def validate_header(self, block: BlockHeader) -> bool:
2024-02-01 09:56:49 +00:00
# TODO: this is not the full block validation spec, only slot leader is verified
return self.verify_slot_leader(block.slot, block.leader_proof)
def verify_slot_leader(self, slot: Slot, proof: MockLeaderProof) -> bool:
return (
proof.verify(slot) # verify slot leader proof
and self.epoch.verify_commitment_is_old_enough_to_lead(proof.commitment)
and self.ledger_state.verify_unspent(proof.nullifier)
2024-02-01 09:56:49 +00:00
)
2024-01-24 11:52:30 +00:00
# Try appending this block to an existing chain and return whether
# the operation was successful
def try_extend_chains(self, block: BlockHeader) -> bool:
if self.tip_id() == block.parent:
2024-01-24 11:52:30 +00:00
self.local_chain.blocks.append(block)
return True
2024-01-24 11:52:30 +00:00
for chain in self.forks:
if chain.tip().id() == block.parent:
2024-01-24 11:52:30 +00:00
chain.blocks.append(block)
return True
return False
def try_create_fork(self, block: BlockHeader) -> Optional[Chain]:
if self.genesis_state.block == block.parent:
# this block is forking off the genesis state
return Chain(blocks=[block])
2024-01-24 11:52:30 +00:00
chains = self.forks + [self.local_chain]
for chain in chains:
if chain.contains_block(block):
2024-01-24 11:52:30 +00:00
block_position = chain.block_position(block)
return Chain(blocks=chain.blocks[:block_position] + [block])
2024-01-24 11:52:30 +00:00
return None
def on_block(self, block: BlockHeader):
if not self.validate_header(block):
return
# check if the new block extends an existing chain
succeeded_in_extending_a_chain = self.try_extend_chains(block)
if not succeeded_in_extending_a_chain:
# we failed to extend one of the existing chains,
# therefore we might need to create a new fork
new_chain = self.try_create_fork(block)
if new_chain is not None:
self.forks.append(new_chain)
else:
# otherwise, we're missing the parent block
# in that case, just ignore the block
return
# We may need to switch forks, lets run the fork choice rule to check.
new_chain = self.fork_choice()
if new_chain == self.local_chain:
# we have not re-org'd therefore we can simply update our ledger state
# if this block extend our local chain
if self.local_chain.tip() == block:
self.ledger_state.apply(block)
else:
# we have re-org'd, therefore we must roll back out ledger state and
# re-apply blocks from the new chain
2024-02-01 16:25:49 +00:00
ledger_state = self.genesis_state.copy()
for block in new_chain.blocks:
ledger_state.apply(block)
self.ledger_state = ledger_state
self.local_chain = new_chain
2024-01-24 11:52:30 +00:00
# Evaluate the fork choice rule and return the block header of the block that should be the head of the chain
def fork_choice(self) -> Chain:
return maxvalid_bg(
self.local_chain, self.forks, k=self.config.k, s=self.config.s
)
2024-01-24 11:52:30 +00:00
def tip_id(self) -> Id:
if self.local_chain.length() > 0:
return self.local_chain.tip().id()
else:
return self.ledger_state.block
2024-02-01 08:19:43 +00:00
@dataclass
class EpochState:
# for details of snapshot schedule please see:
# https://github.com/IntersectMBO/ouroboros-consensus/blob/fe245ac1d8dbfb563ede2fdb6585055e12ce9738/docs/website/contents/for-developers/Glossary.md#epoch-structure
# The stake distribution snapshot is taken at the beginning of the previous epoch
stake_distribution_snapshot: LedgerState
# The nonce snapshot is taken 7k/f slots into the previous epoch
nonce_snapshot: LedgerState
def verify_commitment_is_old_enough_to_lead(self, commitment: Id) -> bool:
return self.stake_distribution_snapshot.verify_committed(commitment)
2024-02-01 08:19:43 +00:00
def total_stake(self) -> int:
"""Returns the total stake that will be used to reletivize leadership proofs during this epoch"""
return self.stake_distribution_snapshot.total_stake
def nonce(self) -> bytes:
return self.nonce_snapshot.nonce
def phi(f: float, alpha: float) -> float:
"""
params:
f: 'active slot coefficient' - the rate of occupied slots
alpha: relative stake held by the validator
returns: the probability that this validator should win the slot lottery
"""
return 1 - (1 - f) ** alpha
class MOCK_LEADER_VRF:
"""NOT SECURE: A mock VRF function where the sk and pk are assummed to be the same"""
ORDER = 2**256
@classmethod
def vrf(cls, sk: int, nonce: bytes, slot: int) -> int:
h = sha256()
h.update(int.to_bytes(sk, length=32))
h.update(nonce)
h.update(int.to_bytes(slot, length=16)) # 64bit slots
return int.from_bytes(h.digest())
@classmethod
def verify(cls, r, pk, nonce, slot):
raise NotImplemented()
@dataclass
2024-01-24 11:52:30 +00:00
class Leader:
config: Config
coin: Coin
2024-02-01 09:56:49 +00:00
def try_prove_slot_leader(
2024-02-01 08:19:43 +00:00
self, epoch: EpochState, slot: Slot
2024-02-01 09:56:49 +00:00
) -> MockLeaderProof | None:
if self._is_slot_leader(epoch, slot):
return MockLeaderProof.from_coin(self.coin)
2024-01-24 11:52:30 +00:00
def propose_block(self, slot: Slot, parent: BlockHeader) -> BlockHeader:
return BlockHeader(parent=parent.id(), slot=slot)
2024-01-24 11:52:30 +00:00
2024-02-01 09:56:49 +00:00
def _is_slot_leader(self, epoch: EpochState, slot: Slot):
relative_stake = self.coin.value / epoch.total_stake()
r = MOCK_LEADER_VRF.vrf(self.coin.pk, epoch.nonce(), slot)
return r < MOCK_LEADER_VRF.ORDER * phi(
self.config.active_slot_coeff, relative_stake
)
2024-01-24 11:52:30 +00:00
def common_prefix_len(a: Chain, b: Chain) -> int:
for i, (x, y) in enumerate(zip(a.blocks, b.blocks)):
if x.id() != y.id():
return i
return min(len(a.blocks), len(b.blocks))
def chain_density(chain: Chain, slot: Slot) -> int:
return len(
[
block
for block in chain.blocks
if block.slot.absolute_slot < slot.absolute_slot
]
)
# Implementation of the fork choice rule as defined in the Ouroboros Genesis paper
# k defines the forking depth of chain we accept without more analysis
# s defines the length of time (unit of slots) after the fork happened we will inspect for chain density
def maxvalid_bg(local_chain: Chain, forks: List[Chain], k: int, s: int) -> Chain:
cmax = local_chain
for chain in forks:
lowest_common_ancestor = common_prefix_len(cmax, chain)
m = cmax.length() - lowest_common_ancestor
if m <= k:
# Classic longest chain rule with parameter k
if cmax.length() < chain.length():
cmax = chain
else:
# The chain is forking too much, we need to pay a bit more attention
# In particular, select the chain that is the densest after the fork
forking_slot = Slot(
cmax.blocks[lowest_common_ancestor].slot.absolute_slot + s
)
cmax_density = chain_density(cmax, forking_slot)
candidate_density = chain_density(chain, forking_slot)
if cmax_density < candidate_density:
cmax = chain
return cmax
2024-01-24 11:52:30 +00:00
if __name__ == "__main__":
pass