2024-02-27 16:49:27 +00:00
|
|
|
from functools import reduce
|
|
|
|
from itertools import batched
|
2024-03-08 13:16:14 +00:00
|
|
|
from typing import Sequence, Tuple
|
2024-02-27 16:49:27 +00:00
|
|
|
|
|
|
|
from eth2spec.deneb.mainnet import bytes_to_bls_field, BLSFieldElement, KZGCommitment as Commitment, KZGProof as Proof
|
|
|
|
from eth2spec.utils import bls
|
|
|
|
|
|
|
|
from .common import BYTES_PER_FIELD_ELEMENT, G1, BLS_MODULUS, GLOBAL_PARAMETERS_G2
|
|
|
|
from .poly import Polynomial
|
|
|
|
|
|
|
|
|
2024-03-20 10:03:39 +00:00
|
|
|
def bytes_to_polynomial(b: bytes, bytes_per_field_element=BYTES_PER_FIELD_ELEMENT) -> Polynomial:
|
2024-02-27 16:49:27 +00:00
|
|
|
"""
|
|
|
|
Convert bytes to list of BLS field scalars.
|
|
|
|
"""
|
2024-03-20 10:03:39 +00:00
|
|
|
assert len(b) % bytes_per_field_element == 0
|
|
|
|
eval_form = [int(bytes_to_bls_field(b)) for b in batched(b, int(bytes_per_field_element))]
|
2024-02-27 16:49:27 +00:00
|
|
|
return Polynomial.from_evaluations(eval_form, BLS_MODULUS)
|
|
|
|
|
|
|
|
|
|
|
|
def g1_linear_combination(polynomial: Polynomial[BLSFieldElement], global_parameters: Sequence[G1]) -> Commitment:
|
|
|
|
"""
|
|
|
|
BLS multiscalar multiplication.
|
|
|
|
"""
|
|
|
|
# we assert to have more points available than elements,
|
|
|
|
# this is dependent on the available kzg setup size
|
|
|
|
assert len(polynomial) <= len(global_parameters)
|
|
|
|
point = reduce(
|
|
|
|
bls.add,
|
|
|
|
(bls.multiply(g, p) for g, p in zip(global_parameters, polynomial)),
|
|
|
|
bls.Z1()
|
|
|
|
)
|
|
|
|
return Commitment(bls.G1_to_bytes48(point))
|
|
|
|
|
|
|
|
|
2024-03-08 13:16:14 +00:00
|
|
|
def bytes_to_commitment(b: bytes, global_parameters: Sequence[G1]) -> Tuple[Polynomial, Commitment]:
|
2024-03-20 10:03:39 +00:00
|
|
|
poly = bytes_to_polynomial(b, bytes_per_field_element=BYTES_PER_FIELD_ELEMENT)
|
2024-03-08 13:16:14 +00:00
|
|
|
return poly, g1_linear_combination(poly, global_parameters)
|
2024-02-27 16:49:27 +00:00
|
|
|
|
|
|
|
|
|
|
|
def generate_element_proof(
|
|
|
|
element_index: int,
|
|
|
|
polynomial: Polynomial,
|
|
|
|
global_parameters: Sequence[G1],
|
|
|
|
roots_of_unity: Sequence[BLSFieldElement],
|
|
|
|
) -> Proof:
|
|
|
|
# compute a witness polynomial in that satisfies `witness(x) = (f(x)-v)/(x-u)`
|
|
|
|
u = int(roots_of_unity[element_index])
|
|
|
|
v = polynomial.eval(u)
|
|
|
|
f_x_v = polynomial - Polynomial([v], BLS_MODULUS)
|
|
|
|
x_u = Polynomial([-u, 1], BLS_MODULUS)
|
|
|
|
witness, _ = f_x_v / x_u
|
|
|
|
return g1_linear_combination(witness, global_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
def verify_element_proof(
|
2024-03-08 13:16:14 +00:00
|
|
|
chunk: BLSFieldElement,
|
2024-02-27 16:49:27 +00:00
|
|
|
commitment: Commitment,
|
|
|
|
proof: Proof,
|
|
|
|
element_index: int,
|
|
|
|
roots_of_unity: Sequence[BLSFieldElement],
|
|
|
|
) -> bool:
|
|
|
|
u = int(roots_of_unity[element_index])
|
2024-03-08 13:16:14 +00:00
|
|
|
v = chunk
|
2024-02-27 16:49:27 +00:00
|
|
|
commitment_check_G1 = bls.bytes48_to_G1(commitment) - bls.multiply(bls.G1(), v)
|
|
|
|
proof_check_g2 = bls.add(
|
|
|
|
GLOBAL_PARAMETERS_G2[1],
|
|
|
|
bls.neg(bls.multiply(bls.G2(), u))
|
|
|
|
)
|
|
|
|
return bls.pairing_check([
|
|
|
|
# G2 here needs to be negated due to library requirements as pairing_check([[G1, -G2], [G1, G2]])
|
|
|
|
[commitment_check_G1, bls.neg(bls.G2())],
|
|
|
|
[bls.bytes48_to_G1(proof), proof_check_g2],
|
|
|
|
])
|