104 lines
3.6 KiB
Python

import argparse
import matplotlib.pyplot as plt
import pandas as pd
from common import COLORS, MARKERS, X_FIELDS
def analyze(path: str, outdir: str):
data = pd.read_csv(path)
for x_field in X_FIELDS:
analyze_versus(data, x_field, outdir)
def analyze_versus(data: pd.DataFrame, x_field: str, outdir: str):
# Group by both x_field and queue_type, then select the row with the largest paramset for each group
max_paramset_data = data.loc[
data.groupby([x_field, "queue_type"])["paramset"].idxmax()
]
all_fields = [
["strong_coeff_min", "casual_coeff_min", "weak_coeff_min"],
["strong_coeff_mean", "casual_coeff_mean", "weak_coeff_mean"],
["strong_coeff_max", "casual_coeff_max", "weak_coeff_max"],
]
# Display the plots
fig, ax = plt.subplots(3, 3, figsize=(20, 10))
for ax_col, fields in enumerate(all_fields):
max_y = 0
for field in fields:
max_y = max(max_y, max_paramset_data[field].max())
for ax_row, field in enumerate(fields):
for queue_type in max_paramset_data["queue_type"].unique():
queue_data = max_paramset_data[
max_paramset_data["queue_type"] == queue_type
]
x_values = queue_data[x_field]
y_values = queue_data[field]
ax[ax_row][ax_col].plot(
x_values,
y_values,
label=queue_type,
marker=MARKERS[queue_type],
color=COLORS[queue_type],
)
ax[ax_row][ax_col].set_title(f"{field} vs {x_field}", fontsize=10)
ax[ax_row][ax_col].set_xlabel(x_field)
ax[ax_row][ax_col].set_ylabel(field)
if ax_row == 0 and ax_col == len(all_fields) - 1:
ax[ax_row][ax_col].legend(bbox_to_anchor=(1, 1), loc="upper left")
ax[ax_row][ax_col].grid(True)
if max_y < 1e6:
ax[ax_row][ax_col].set_ylim(-10, max_y * 1.05)
else:
ax[ax_row][ax_col].set_ylim(bottom=-10)
plt.tight_layout()
fig.savefig(f"{outdir}/coeff_vs_{x_field}.png")
# Display the table of values
# Create a table with x_field, queue_type, and coefficients
flatten_fields = [
field for zipped_fields in zip(*all_fields) for field in zipped_fields
]
columns = [x_field, "queue_type"] + flatten_fields
table_data = max_paramset_data[columns].sort_values(by=[x_field, "queue_type"])
# Prepare to display values with only 2 decimal places
table_data[fields] = table_data[fields].map(
lambda x: f"{x:.2e}" if abs(x) >= 1e6 else f"{x:.2f}"
)
# Display the table as a separate subplot
fig_table, ax_table = plt.subplots(
figsize=(len(columns) * 1.8, len(table_data) * 0.3)
)
ax_table.axis("off") # Turn off the axis
table = ax_table.table(
cellText=table_data.values,
colLabels=table_data.columns,
cellLoc="center",
loc="center",
)
table.auto_set_font_size(False)
table.set_fontsize(10)
table.scale(1, 1.5)
for i in range(len(table_data.columns)):
table.auto_set_column_width(i)
fig_table.savefig(f"{outdir}/coeff_vs_{x_field}_table.png")
plt.draw()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Aggregate the results of all paramsets of an experiment"
)
parser.add_argument("path", type=str, help="dir path")
parser.add_argument("outdir", type=str, help="output dir path")
args = parser.parse_args()
analyze(args.path, args.outdir)