mirror of
https://github.com/logos-co/nomos-simulations.git
synced 2025-01-11 11:14:51 +00:00
153 lines
5.4 KiB
Python
153 lines
5.4 KiB
Python
from collections import Counter, defaultdict
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy
|
|
import pandas
|
|
from matplotlib.axes import Axes
|
|
|
|
from protocol.node import Node
|
|
from sim.connection import ObservedMeteredRemoteSimplexConnection
|
|
from sim.message import Message
|
|
|
|
# A map of nodes to their inbound/outbound connections
|
|
NodeConnectionsMap = dict[
|
|
Node,
|
|
tuple[
|
|
list[ObservedMeteredRemoteSimplexConnection],
|
|
list[ObservedMeteredRemoteSimplexConnection],
|
|
],
|
|
]
|
|
|
|
|
|
class ConnectionStats:
|
|
def __init__(self):
|
|
self.conns_per_node: NodeConnectionsMap = defaultdict(lambda: ([], []))
|
|
|
|
def register(
|
|
self,
|
|
node: Node,
|
|
inbound_conn: ObservedMeteredRemoteSimplexConnection,
|
|
outbound_conn: ObservedMeteredRemoteSimplexConnection,
|
|
):
|
|
self.conns_per_node[node][0].append(inbound_conn)
|
|
self.conns_per_node[node][1].append(outbound_conn)
|
|
|
|
def analyze(self):
|
|
self.__message_sizes()
|
|
self.__bandwidths_per_conn()
|
|
self.__bandwidths_per_node()
|
|
|
|
def __message_sizes(self):
|
|
"""
|
|
Analyzes all message sizes sent across all connections of all nodes.
|
|
"""
|
|
sizes: Counter[int] = Counter()
|
|
for _, (_, outbound_conns) in self.conns_per_node.items():
|
|
for conn in outbound_conns:
|
|
sizes.update(conn.msg_sizes)
|
|
|
|
df = pandas.DataFrame.from_dict(sizes, orient="index").reset_index()
|
|
df.columns = ["msg_size", "count"]
|
|
print("==========================================")
|
|
print("Message Size Distribution")
|
|
print("==========================================")
|
|
print(f"{df}\n")
|
|
|
|
def __bandwidths_per_conn(self):
|
|
"""
|
|
Analyzes the bandwidth consumed by each simplex connection.
|
|
"""
|
|
plt.plot(figsize=(12, 6))
|
|
|
|
for _, (_, outbound_conns) in self.conns_per_node.items():
|
|
for conn in outbound_conns:
|
|
sending_bandwidths = conn.sending_bandwidths().map(lambda x: x / 1024)
|
|
plt.plot(sending_bandwidths.index, sending_bandwidths)
|
|
|
|
plt.title("Unidirectional Bandwidths per Connection")
|
|
plt.xlabel("Time (s)")
|
|
plt.ylabel("Bandwidth (KiB/s)")
|
|
plt.ylim(bottom=0)
|
|
plt.grid(True)
|
|
plt.tight_layout()
|
|
plt.draw()
|
|
|
|
def __bandwidths_per_node(self):
|
|
"""
|
|
Analyzes the inbound/outbound bandwidths consumed by each node (sum of all its connections).
|
|
"""
|
|
_, axs = plt.subplots(nrows=2, ncols=1, figsize=(12, 6))
|
|
assert isinstance(axs, numpy.ndarray)
|
|
|
|
for i, (_, (inbound_conns, outbound_conns)) in enumerate(
|
|
self.conns_per_node.items()
|
|
):
|
|
inbound_bandwidths = (
|
|
pandas.concat(
|
|
[conn.receiving_bandwidths() for conn in inbound_conns], axis=1
|
|
)
|
|
.sum(axis=1)
|
|
.map(lambda x: x / 1024)
|
|
)
|
|
outbound_bandwidths = (
|
|
pandas.concat(
|
|
[conn.sending_bandwidths() for conn in outbound_conns], axis=1
|
|
)
|
|
.sum(axis=1)
|
|
.map(lambda x: x / 1024)
|
|
)
|
|
axs[0].plot(inbound_bandwidths.index, inbound_bandwidths, label=f"Node-{i}")
|
|
axs[1].plot(
|
|
outbound_bandwidths.index, outbound_bandwidths, label=f"Node-{i}"
|
|
)
|
|
|
|
axs[0].set_title("Inbound Bandwidths per Node")
|
|
axs[0].set_xlabel("Time (s)")
|
|
axs[0].set_ylabel("Bandwidth (KiB/s)")
|
|
axs[0].legend()
|
|
axs[0].set_ylim(bottom=0)
|
|
axs[0].grid(True)
|
|
|
|
axs[1].set_title("Outbound Bandwidths per Node")
|
|
axs[1].set_xlabel("Time (s)")
|
|
axs[1].set_ylabel("Bandwidth (KiB/s)")
|
|
axs[1].legend()
|
|
axs[1].set_ylim(bottom=0)
|
|
axs[1].grid(True)
|
|
|
|
plt.tight_layout()
|
|
plt.draw()
|
|
|
|
|
|
class DisseminationTime:
|
|
def __init__(self, num_nodes: int):
|
|
# A collection of time taken for a message to propagate through all mix nodes in its mix route
|
|
self.mix_propagation_times: list[float] = []
|
|
# A collection of time taken for a message to be broadcasted from the last mix to all nodes in the network
|
|
self.broadcast_dissemination_times: list[float] = []
|
|
# Data structures to check if a message has been broadcasted to all nodes
|
|
self.broadcast_status: Counter[Message] = Counter()
|
|
self.num_nodes: int = num_nodes
|
|
|
|
def add_mix_propagation_time(self, elapsed: float):
|
|
self.mix_propagation_times.append(elapsed)
|
|
|
|
def add_broadcasted_msg(self, msg: Message, elapsed: float):
|
|
assert self.broadcast_status[msg] < self.num_nodes
|
|
self.broadcast_status.update([msg])
|
|
if self.broadcast_status[msg] == self.num_nodes:
|
|
self.broadcast_dissemination_times.append(elapsed)
|
|
|
|
def analyze(self):
|
|
print("==========================================")
|
|
print("Message Dissemination Time")
|
|
print("==========================================")
|
|
print("[Mix Propagation Times]")
|
|
mix_propagation_times = pandas.Series(self.mix_propagation_times)
|
|
print(mix_propagation_times.describe())
|
|
print("")
|
|
print("[Broadcast Dissemination Times]")
|
|
broadcast_travel_times = pandas.Series(self.broadcast_dissemination_times)
|
|
print(broadcast_travel_times.describe())
|
|
print("")
|