feat(blend): calculate topology diameter
This commit is contained in:
parent
be304046dd
commit
9f9c6d0d34
|
@ -1,3 +1,4 @@
|
|||
use std::collections::HashMap;
|
||||
// std
|
||||
use std::fs::File;
|
||||
use std::path::{Path, PathBuf};
|
||||
|
@ -16,7 +17,7 @@ use netrunner::node::{NodeId, NodeIdExt};
|
|||
use netrunner::output_processors::Record;
|
||||
use netrunner::runner::{BoxedNode, SimulationRunnerHandle};
|
||||
use netrunner::streaming::{io::IOSubscriber, naive::NaiveSubscriber, StreamType};
|
||||
use node::blend::topology::build_topology;
|
||||
use node::blend::topology::Topology;
|
||||
use nomos_blend::cover_traffic::CoverTrafficSettings;
|
||||
use nomos_blend::message_blend::{
|
||||
CryptographicProcessorSettings, MessageBlendSettings, TemporalSchedulerSettings,
|
||||
|
@ -26,7 +27,7 @@ use rand::seq::SliceRandom;
|
|||
use rand::{RngCore, SeedableRng};
|
||||
use rand_chacha::ChaCha12Rng;
|
||||
use serde::de::DeserializeOwned;
|
||||
use serde::Serialize;
|
||||
use serde::{Deserialize, Serialize};
|
||||
// internal
|
||||
use crate::node::blend::BlendNode;
|
||||
use crate::settings::SimSettings;
|
||||
|
@ -89,7 +90,8 @@ impl SimulationApp {
|
|||
|
||||
let network = Arc::new(Mutex::new(Network::<BlendMessage>::new(regions_data, seed)));
|
||||
|
||||
let topology = build_topology(&node_ids, settings.connected_peers_count, &mut rng);
|
||||
let topology = Topology::new(&node_ids, settings.connected_peers_count, &mut rng);
|
||||
log_topology(&topology);
|
||||
|
||||
let nodes: Vec<_> = node_ids
|
||||
.iter()
|
||||
|
@ -243,6 +245,20 @@ fn load_json_from_file<T: DeserializeOwned>(path: &Path) -> anyhow::Result<T> {
|
|||
Ok(serde_json::from_reader(f)?)
|
||||
}
|
||||
|
||||
fn log_topology(topology: &Topology) {
|
||||
let log = TopologyLog {
|
||||
topology: topology.to_node_indices(),
|
||||
diameter: topology.diameter(),
|
||||
};
|
||||
tracing::info!("Topology: {}", serde_json::to_string(&log).unwrap());
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
struct TopologyLog {
|
||||
topology: HashMap<usize, Vec<usize>>,
|
||||
diameter: usize,
|
||||
}
|
||||
|
||||
fn main() -> anyhow::Result<()> {
|
||||
let app: SimulationApp = SimulationApp::parse();
|
||||
let maybe_guard = log::config_tracing(app.log_format, &app.log_to, app.with_metrics);
|
||||
|
|
|
@ -1,91 +1,149 @@
|
|||
use std::collections::{HashMap, HashSet};
|
||||
|
||||
use netrunner::node::NodeId;
|
||||
use netrunner::node::{NodeId, NodeIdExt};
|
||||
use rand::{seq::SliceRandom, RngCore};
|
||||
|
||||
pub type Topology = HashMap<NodeId, HashSet<NodeId>>;
|
||||
#[derive(Clone)]
|
||||
pub struct Topology(HashMap<NodeId, HashSet<NodeId>>);
|
||||
|
||||
/// Builds a topology with the given nodes and peering degree
|
||||
/// by ensuring that all nodes are connected (no partition)
|
||||
/// and all nodes have the same number of connections (only if possible).
|
||||
pub fn build_topology<R: RngCore>(nodes: &[NodeId], peering_degree: usize, mut rng: R) -> Topology {
|
||||
tracing::info!("Building topology: peering_degree:{}", peering_degree);
|
||||
loop {
|
||||
let mut topology = nodes
|
||||
.iter()
|
||||
.map(|&node| (node, HashSet::new()))
|
||||
.collect::<HashMap<_, _>>();
|
||||
|
||||
for node in nodes.iter() {
|
||||
// Collect peer candidates
|
||||
let mut others = nodes
|
||||
impl Topology {
|
||||
/// Builds a topology with the given nodes and peering degree
|
||||
/// by ensuring that all nodes are connected (no partition)
|
||||
/// and all nodes have the same number of connections (only if possible).
|
||||
pub fn new<R: RngCore>(nodes: &[NodeId], peering_degree: usize, mut rng: R) -> Self {
|
||||
tracing::info!("Building topology: peering_degree:{}", peering_degree);
|
||||
loop {
|
||||
let mut topology = nodes
|
||||
.iter()
|
||||
.filter(|&other| {
|
||||
// Check if the other node is not already connected to the current node
|
||||
// and the other node has not reached the peering degree.
|
||||
other != node
|
||||
&& !topology.get(node).unwrap().contains(other)
|
||||
&& topology.get(other).unwrap().len() < peering_degree
|
||||
})
|
||||
.copied()
|
||||
.collect::<Vec<_>>();
|
||||
.map(|&node| (node, HashSet::new()))
|
||||
.collect::<HashMap<_, _>>();
|
||||
|
||||
// How many more connections the current node needs
|
||||
let num_needs = peering_degree - topology.get(node).unwrap().len();
|
||||
// Sample peers as many as possible and connect them to the current node
|
||||
let k = std::cmp::min(num_needs, others.len());
|
||||
others.as_mut_slice().shuffle(&mut rng);
|
||||
others.into_iter().take(k).for_each(|peer| {
|
||||
topology.get_mut(node).unwrap().insert(peer);
|
||||
topology.get_mut(&peer).unwrap().insert(*node);
|
||||
});
|
||||
}
|
||||
for node in nodes.iter() {
|
||||
// Collect peer candidates
|
||||
let mut others = nodes
|
||||
.iter()
|
||||
.filter(|&other| {
|
||||
// Check if the other node is not already connected to the current node
|
||||
// and the other node has not reached the peering degree.
|
||||
other != node
|
||||
&& !topology.get(node).unwrap().contains(other)
|
||||
&& topology.get(other).unwrap().len() < peering_degree
|
||||
})
|
||||
.copied()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// Check constraints:
|
||||
// - All nodes are connected (no partition)
|
||||
// - All nodes have the same number of connections (if possible)
|
||||
let can_have_equal_conns = (nodes.len() * peering_degree) % 2 == 0;
|
||||
if check_all_connected(&topology)
|
||||
&& (!can_have_equal_conns || check_equal_conns(&topology, peering_degree))
|
||||
{
|
||||
return topology;
|
||||
// How many more connections the current node needs
|
||||
let num_needs = peering_degree - topology.get(node).unwrap().len();
|
||||
// Sample peers as many as possible and connect them to the current node
|
||||
let k = std::cmp::min(num_needs, others.len());
|
||||
others.as_mut_slice().shuffle(&mut rng);
|
||||
others.into_iter().take(k).for_each(|peer| {
|
||||
topology.get_mut(node).unwrap().insert(peer);
|
||||
topology.get_mut(&peer).unwrap().insert(*node);
|
||||
});
|
||||
}
|
||||
|
||||
// Check constraints:
|
||||
// - All nodes are connected (no partition)
|
||||
// - All nodes have the same number of connections (if possible)
|
||||
let topology = Self(topology);
|
||||
let can_have_equal_conns = (nodes.len() * peering_degree) % 2 == 0;
|
||||
if topology.check_all_connected()
|
||||
&& (!can_have_equal_conns || topology.check_equal_conns(peering_degree))
|
||||
{
|
||||
return topology;
|
||||
}
|
||||
tracing::info!("Topology doesn't meet constraints. Retrying...");
|
||||
}
|
||||
tracing::info!("Topology doesn't meet constraints. Retrying...");
|
||||
}
|
||||
}
|
||||
|
||||
/// Checks if all nodes are connected (no partition) in the topology.
|
||||
fn check_all_connected(topology: &Topology) -> bool {
|
||||
let visited = dfs(topology, *topology.keys().next().unwrap());
|
||||
visited.len() == topology.len()
|
||||
}
|
||||
/// Checks if all nodes are connected (no partition) in the topology.
|
||||
fn check_all_connected(&self) -> bool {
|
||||
let visited = self.dfs(*self.0.keys().next().unwrap());
|
||||
visited.len() == self.0.len()
|
||||
}
|
||||
|
||||
/// Depth-first search to visit nodes in the topology.
|
||||
fn dfs(topology: &Topology, start_node: NodeId) -> HashSet<NodeId> {
|
||||
let mut visited: HashSet<NodeId> = HashSet::new();
|
||||
let mut stack: Vec<NodeId> = Vec::new();
|
||||
stack.push(start_node);
|
||||
while let Some(node) = stack.pop() {
|
||||
visited.insert(node);
|
||||
for peer in topology.get(&node).unwrap().iter() {
|
||||
if !visited.contains(peer) {
|
||||
stack.push(*peer);
|
||||
/// Depth-first search to visit nodes in the topology.
|
||||
fn dfs(&self, start_node: NodeId) -> HashSet<NodeId> {
|
||||
let mut visited: HashSet<NodeId> = HashSet::new();
|
||||
let mut stack: Vec<NodeId> = Vec::new();
|
||||
stack.push(start_node);
|
||||
while let Some(node) = stack.pop() {
|
||||
visited.insert(node);
|
||||
for peer in self.0.get(&node).unwrap().iter() {
|
||||
if !visited.contains(peer) {
|
||||
stack.push(*peer);
|
||||
}
|
||||
}
|
||||
}
|
||||
visited
|
||||
}
|
||||
visited
|
||||
}
|
||||
|
||||
/// Checks if all nodes have the same number of connections.
|
||||
fn check_equal_conns(topology: &Topology, peering_degree: usize) -> bool {
|
||||
topology
|
||||
.iter()
|
||||
.all(|(_, peers)| peers.len() == peering_degree)
|
||||
/// Checks if all nodes have the same number of connections.
|
||||
fn check_equal_conns(&self, peering_degree: usize) -> bool {
|
||||
self.0
|
||||
.iter()
|
||||
.all(|(_, peers)| peers.len() == peering_degree)
|
||||
}
|
||||
|
||||
/// Calculate the diameter (longest path length) of the topology.
|
||||
pub fn diameter(&self) -> usize {
|
||||
// Calculate a diameter from each node and take the maximum
|
||||
self.0
|
||||
.keys()
|
||||
.map(|&node| self.diameter_from(node))
|
||||
.fold(0, usize::max)
|
||||
}
|
||||
|
||||
/// Calculate a diameter (longest path length) of the topology from the start_node.
|
||||
fn diameter_from(&self, start_node: NodeId) -> usize {
|
||||
// start_node is visited at the beginning
|
||||
let mut visited: HashSet<NodeId> = HashSet::from([start_node]);
|
||||
|
||||
// Count the number of hops to visit all nodes
|
||||
let mut hop_count = 0;
|
||||
let mut next_hop: HashSet<NodeId> = self.0.get(&start_node).unwrap().clone();
|
||||
while !next_hop.is_empty() {
|
||||
// First, visit all nodes in the next hop and increase the hop count
|
||||
next_hop.iter().for_each(|&node| {
|
||||
assert!(visited.insert(node));
|
||||
});
|
||||
hop_count += 1;
|
||||
// Then, build the new next hop by collecting all peers of the current next hop
|
||||
// except peers already visited
|
||||
next_hop = next_hop
|
||||
.iter()
|
||||
.flat_map(|node| self.0.get(node).unwrap())
|
||||
.filter(|&peer| !visited.contains(peer))
|
||||
.copied()
|
||||
.collect();
|
||||
}
|
||||
hop_count
|
||||
}
|
||||
|
||||
pub fn get(&self, node: &NodeId) -> Option<&HashSet<NodeId>> {
|
||||
self.0.get(node)
|
||||
}
|
||||
|
||||
/// Converts all [`NodeId`]s in the topology to their indices.
|
||||
pub fn to_node_indices(&self) -> HashMap<usize, Vec<usize>> {
|
||||
self.0
|
||||
.iter()
|
||||
.map(|(node, peers)| {
|
||||
(
|
||||
node.index(),
|
||||
peers.iter().map(|peer| peer.index()).collect(),
|
||||
)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use netrunner::node::NodeIdExt;
|
||||
use rand::SeedableRng;
|
||||
use rand_chacha::ChaCha8Rng;
|
||||
|
||||
use super::*;
|
||||
|
||||
|
@ -97,9 +155,9 @@ mod tests {
|
|||
let peering_degree = 4;
|
||||
|
||||
let mut rng = rand::rngs::OsRng;
|
||||
let topology = build_topology(&nodes, peering_degree, &mut rng);
|
||||
assert_eq!(topology.len(), nodes.len());
|
||||
for (node, peers) in topology.iter() {
|
||||
let topology = Topology::new(&nodes, peering_degree, &mut rng);
|
||||
assert_eq!(topology.0.len(), nodes.len());
|
||||
for (node, peers) in topology.0.iter() {
|
||||
assert!(peers.len() == peering_degree);
|
||||
for peer in peers.iter() {
|
||||
assert!(topology.get(peer).unwrap().contains(node));
|
||||
|
@ -115,13 +173,25 @@ mod tests {
|
|||
let peering_degree = 3;
|
||||
|
||||
let mut rng = rand::rngs::OsRng;
|
||||
let topology = build_topology(&nodes, peering_degree, &mut rng);
|
||||
assert_eq!(topology.len(), nodes.len());
|
||||
for (node, peers) in topology.iter() {
|
||||
let topology = Topology::new(&nodes, peering_degree, &mut rng);
|
||||
assert_eq!(topology.0.len(), nodes.len());
|
||||
for (node, peers) in topology.0.iter() {
|
||||
assert!(peers.len() <= peering_degree);
|
||||
for peer in peers.iter() {
|
||||
assert!(topology.get(peer).unwrap().contains(node));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_diameter() {
|
||||
let nodes = (0..100).map(NodeId::from_index).collect::<Vec<_>>();
|
||||
let peering_degree = 4;
|
||||
let mut rng = ChaCha8Rng::seed_from_u64(0);
|
||||
let topology = Topology::new(&nodes, peering_degree, &mut rng);
|
||||
let diameter = topology.diameter();
|
||||
println!("diameter: {}", diameter);
|
||||
assert!(diameter > 0);
|
||||
assert!(diameter <= nodes.len());
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue