89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
|
import argparse
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import pandas as pd
|
||
|
|
||
|
from common import COLORS, MARKERS, X_FIELDS
|
||
|
|
||
|
|
||
|
def analyze(path: str, outdir: str):
|
||
|
data = pd.read_csv(path)
|
||
|
for x_field in X_FIELDS:
|
||
|
analyze_versus(data, x_field, outdir)
|
||
|
|
||
|
|
||
|
def analyze_versus(data: pd.DataFrame, x_field: str, outdir: str):
|
||
|
# Group by both x_field and queue_type, then select the row with the largest paramset for each group
|
||
|
max_paramset_data = data.loc[
|
||
|
data.groupby([x_field, "queue_type"])["paramset"].idxmax()
|
||
|
]
|
||
|
|
||
|
fields = ["latency_min", "latency_mean", "latency_max"]
|
||
|
|
||
|
# Display the plots
|
||
|
fig, ax = plt.subplots(1, 3, figsize=(20, 4))
|
||
|
for ax_col, field in enumerate(fields):
|
||
|
for queue_type in max_paramset_data["queue_type"].unique():
|
||
|
queue_data = max_paramset_data[
|
||
|
max_paramset_data["queue_type"] == queue_type
|
||
|
]
|
||
|
x_values = queue_data[x_field]
|
||
|
y_values = queue_data[field]
|
||
|
ax[ax_col].plot(
|
||
|
x_values,
|
||
|
y_values,
|
||
|
label=queue_type,
|
||
|
marker=MARKERS[queue_type],
|
||
|
color=COLORS[queue_type],
|
||
|
)
|
||
|
|
||
|
ax[ax_col].set_title(f"{field} vs {x_field}", fontsize=10)
|
||
|
ax[ax_col].set_xlabel(x_field)
|
||
|
ax[ax_col].set_ylabel(field)
|
||
|
if ax_col == len(fields) - 1:
|
||
|
ax[ax_col].legend(bbox_to_anchor=(1, 1), loc="upper left")
|
||
|
ax[ax_col].grid(True)
|
||
|
ax[ax_col].set_ylim(bottom=0)
|
||
|
|
||
|
plt.tight_layout()
|
||
|
fig.savefig(f"{outdir}/latency_vs_{x_field}.png")
|
||
|
|
||
|
# Display the table of values
|
||
|
# Create a table with x_field, queue_type, and coefficients
|
||
|
columns = [x_field, "queue_type"] + fields
|
||
|
table_data = max_paramset_data[columns].sort_values(by=[x_field, "queue_type"])
|
||
|
# Prepare to display values with only 2 decimal places
|
||
|
table_data[fields] = table_data[fields].map(
|
||
|
lambda x: f"{x:.2e}" if abs(x) >= 1e6 else f"{x:.2f}"
|
||
|
)
|
||
|
# Display the table as a separate subplot
|
||
|
fig_table, ax_table = plt.subplots(
|
||
|
figsize=(len(columns) * 1.8, len(table_data) * 0.3)
|
||
|
)
|
||
|
ax_table.axis("off") # Turn off the axis
|
||
|
table = ax_table.table(
|
||
|
cellText=table_data.values,
|
||
|
colLabels=table_data.columns,
|
||
|
cellLoc="center",
|
||
|
loc="center",
|
||
|
)
|
||
|
table.auto_set_font_size(False)
|
||
|
table.set_fontsize(10)
|
||
|
table.scale(1, 1.5)
|
||
|
for i in range(len(table_data.columns)):
|
||
|
table.auto_set_column_width(i)
|
||
|
|
||
|
fig_table.savefig(f"{outdir}/latency_vs_{x_field}_table.png")
|
||
|
|
||
|
plt.draw()
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="Aggregate the results of all paramsets of an experiment"
|
||
|
)
|
||
|
parser.add_argument("path", type=str, help="dir path")
|
||
|
parser.add_argument("outdir", type=str, help="output dir path")
|
||
|
args = parser.parse_args()
|
||
|
analyze(args.path, args.outdir)
|