nomos-pocs/proof_of_validator/circom/validator_anemoi.circom

225 lines
7.9 KiB
Plaintext

//test
pragma circom 2.1.9;
include "../../circom_circuits/hash/anemoi/anemoi_2_to_1_Jubjub.circom";
include "../../circom_circuits/hash/anemoi/anemoi_4_to_1_Jubjub.circom";
include "../../circom_circuits/hash/anemoi/anemoi_16_to_1_Jubjub.circom";
include "../../circom_circuits/circomlib/circuits/bitify.circom";
include "../../circom_circuits/circomlib/circuits/comparators.circom";
template BLSLessThan(n) {
assert(n <= 253);
signal input in[2];
signal output out;
component n2b = Num2Bits(n+1);
n2b.in <== in[0]+ (1<<n) - in[1];
out <== 1-n2b.out[n];
}
template check_bits(n){
signal input bits[n];
for(var i=0; i<n; i++){
bits[i] * (1-bits[i]) === 0;
}
}
template commitment_computer(){
signal input note_nonce;
signal input nullifier_public_key;
signal input value;
signal input constraints;
signal input unit;
signal input state;
signal output commitment;
component hash = hash_16_to_1();
//The b"coin-commitment" Tag converted in F_p element (from bits with big endian order)
hash.in[0] <== 516297089516239580383111224192495220;
hash.in[1] <== note_nonce;
hash.in[2] <== nullifier_public_key;
hash.in[3] <== value;
hash.in[4] <== constraints;
hash.in[5] <== unit;
hash.in[6] <== state;
for(var i=7; i<16; i++){
hash.in[i] <== 0;
}
commitment <== hash.out;
}
template nonce_updater(){
signal input note_nonce;
signal input nullifier_secret_key;
signal output updated_nonce;
component hash = hash_4_to_1();
//The b"coin-evolve" Tag converted in F_p element (from bits with big endian order)
hash.in[0] <== 120209783668687835891529317;
hash.in[1] <== note_nonce;
hash.in[2] <== nullifier_secret_key;
hash.in[3] <== 0;
updated_nonce <== hash.out;
}
template nullifier_computer(){
signal input note_nonce;
signal input nullifier_secret_key;
signal input value;
signal output nullifier;
component hash = hash_4_to_1();
//The b"coin-nullifier" Tag converted in F_p element (from bits with big endian order)
hash.in[0] <== 2016785505923014207119328528655730;
hash.in[1] <== note_nonce;
hash.in[2] <== nullifier_secret_key;
hash.in[3] <== value;
nullifier <== hash.out;
}
template membership_checker(){
signal input leaf; //The note commitment
signal input root; //The root of the Merkle Tree (of depth 32)
signal input index[32]; //Position of the note commitment in bits in big endian
signal input node[32]; //Complementary hashes
signal input is_null; //If is_null is 1 we don't check the membership (any value of node and index will be correct)
component hash[32];
for(var i=0; i<32; i++){
hash[i] = hash_2_to_1();
}
hash[0].in[0] <== leaf - index[31] * (leaf - node[0]);
hash[0].in[1] <== node[0] - index[31] * (node[0] - leaf);
for(var i=1; i<32; i++){
hash[i].in[0] <== hash[i-1].out - index[31-i] * (hash[i-1].out - node[i]);
hash[i].in[1] <== node[i] - index[31-i] * (node[i] - hash[i-1].out);
}
root === hash[31].out * (1 - is_null);
}
template anemoi_proof_of_validator(max_notes, minimum_stake){ //TODO: put minimum_stake in the input to change it dynamically
signal input commitments_root;
// Note variables
signal input constraints[max_notes]; // Every note field represented as F_p elements for now (constraints are represented by their Merkle root)
signal input value[max_notes]; // 0 if no more notes needed
signal input unit[max_notes];
signal input state[max_notes]; // This field hold the identity of the owner (its public key or ID)
signal input note_nonce[max_notes];
signal input nullifier_secret_key[max_notes];
signal input index[max_notes][32]; //Position of the note commitment in bits in big endian
signal input nodes[max_notes][32]; //Merkle proof of the commitment
signal output identity;
signal output nullifiers[max_notes];
signal output updated_commiments[max_notes];
// Check that index inputs are indeed bits
component bit_checker[max_notes];
for(var i=0; i<max_notes; i++){
bit_checker[i] = check_bits(32);
for(var j=0; j<32; j++){
bit_checker[i].bits[j] <== index[i][j];
}
}
// Compute the note commitments
component note_committer[max_notes];
for(var i=0; i<max_notes; i++){
note_committer[i] = commitment_computer();
note_committer[i].note_nonce <== note_nonce[i];
note_committer[i].nullifier_public_key <== nullifier_secret_key[i]; // TODO: reflect the nullifier public key computation later when defined
note_committer[i].value <== value[i];
note_committer[i].constraints <== constraints[i];
note_committer[i].unit <== unit[i];
note_committer[i].state <== state[i];
}
//check the identity between the notes
identity <== state[0]; // The first note must not be null
component is_null[max_notes];
is_null[0] = IsZero();
is_null[0].in <== value[0];
is_null[0].out === 0;
signal intermediate[max_notes-1];
for(var i=1; i<max_notes; i++){
is_null[i] = IsZero();
is_null[i].in <== value[i];
intermediate[i-1] <== identity * (1 - is_null[i].out);
intermediate[i-1] === state[i] * (1 - is_null[i].out);
}
// Check the commitments membership
component membership_checker[max_notes];
for(var i=0; i<max_notes; i++){
membership_checker[i] = membership_checker();
membership_checker[i].leaf <== note_committer[i].commitment;
membership_checker[i].root <== commitments_root * (1- is_null[i].out); // Set the root at 0 is note is null
membership_checker[i].is_null <== is_null[i].out;
for(var j =0; j<32; j++){
membership_checker[i].index[j] <== index[i][j];
membership_checker[i].node[j] <== nodes[i][j];
}
}
// Check that the value exceed the minimum stake
signal sum[max_notes-1];
sum[0] <== value[0] + value[1];
for(var i = 1; i<max_notes-1; i++){
sum[i] <== sum[i-1] + value[i+1];
}
component isLess = BLSLessThan(253);
isLess.in[0] <== minimum_stake;
isLess.in[1] <== sum[max_notes-2];
isLess.out === 1;
// Compute the note nullifiers
component nullifier_computer[max_notes];
for(var i=0; i<max_notes; i++){
nullifier_computer[i] = nullifier_computer();
nullifier_computer[i].note_nonce <== note_nonce[i];
nullifier_computer[i].nullifier_secret_key <== nullifier_secret_key[i];
nullifier_computer[i].value <== value[i];
nullifiers[i] <== nullifier_computer[i].nullifier;
}
// Compute the evolved nonces
component nonce_updater[max_notes];
for(var i=0; i<max_notes; i++) {
nonce_updater[i] = nonce_updater();
nonce_updater[i].note_nonce <== note_nonce[i];
nonce_updater[i].nullifier_secret_key <== nullifier_secret_key[i];
}
// Compute the new note commitments
component updated_note_committer[max_notes];
for(var i=0; i<max_notes; i++) {
updated_note_committer[i] = commitment_computer();
updated_note_committer[i].note_nonce <== nonce_updater[i].updated_nonce;
updated_note_committer[i].nullifier_public_key <== nullifier_secret_key[i]; // TODO: reflect the nullifier public key computation later when defined
updated_note_committer[i].value <== value[i];
updated_note_committer[i].constraints <== constraints[i];
updated_note_committer[i].unit <== unit[i];
updated_note_committer[i].state <== state[i];
updated_commiments[i] <== updated_note_committer[i].commitment;
}
}
component main {public [commitments_root]} = anemoi_proof_of_validator(50,10000);