Implement Rust version tree overlay (#238)

* implement tree overlay in Rust
This commit is contained in:
Al Liu 2023-07-05 17:28:22 +08:00 committed by GitHub
parent 90cf29bf86
commit d0c6df23fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 513 additions and 0 deletions

View File

@ -7,6 +7,7 @@ edition = "2021"
[dependencies] [dependencies]
serde = { version = "1.0", features = ["derive"], optional = true } serde = { version = "1.0", features = ["derive"], optional = true }
blake2 = "0.10"
bls-signatures = "0.14" bls-signatures = "0.14"
integer-encoding = "3" integer-encoding = "3"
sha2 = "0.10" sha2 = "0.10"

View File

@ -2,8 +2,11 @@ use super::types::*;
mod flat_overlay; mod flat_overlay;
mod random_beacon; mod random_beacon;
mod tree_overlay;
pub use flat_overlay::*; pub use flat_overlay::*;
pub use random_beacon::*; pub use random_beacon::*;
pub use tree_overlay::*;
use std::marker::Send; use std::marker::Send;

View File

@ -0,0 +1,3 @@
mod overlay;
mod tree;
pub use overlay::*;

View File

@ -0,0 +1,316 @@
use super::tree::Tree;
use crate::{overlay::LeaderSelection, Committee, NodeId, Overlay};
use rand::rngs::StdRng;
use rand::seq::SliceRandom;
use rand::SeedableRng;
#[derive(Debug, Clone)]
pub struct TreeOverlaySettings<L: LeaderSelection> {
pub nodes: Vec<NodeId>,
pub current_leader: NodeId,
pub entropy: [u8; 32],
pub number_of_committees: usize,
pub leader: L,
}
#[derive(Debug, Clone)]
pub struct TreeOverlay<L> {
pub(super) entropy: [u8; 32],
pub(super) number_of_committees: usize,
pub(super) nodes: Vec<NodeId>,
pub(super) current_leader: NodeId,
pub(super) carnot_tree: Tree,
pub(super) leader: L,
}
impl<L> Overlay for TreeOverlay<L>
where
L: LeaderSelection + Send + Sync + 'static,
{
type Settings = TreeOverlaySettings<L>;
type LeaderSelection = L;
fn new(settings: Self::Settings) -> Self {
let TreeOverlaySettings {
mut nodes,
current_leader,
entropy,
number_of_committees,
leader,
} = settings;
let mut rng = StdRng::from_seed(entropy);
// TODO: support custom shuffling algorithm
nodes.shuffle(&mut rng);
let carnot_tree = Tree::new(&nodes, number_of_committees);
Self {
entropy,
number_of_committees,
nodes,
current_leader,
carnot_tree,
leader,
}
}
fn root_committee(&self) -> Committee {
self.carnot_tree.root_committee().clone()
}
fn rebuild(&mut self, _timeout_qc: crate::TimeoutQc) {
unimplemented!("do nothing for now")
}
fn is_member_of_child_committee(&self, parent: NodeId, child: NodeId) -> bool {
let child_parent = self.parent_committee(child);
let parent = self.carnot_tree.committee_by_member_id(&parent);
parent.map_or(false, |p| child_parent.eq(p))
}
fn is_member_of_root_committee(&self, id: NodeId) -> bool {
self.carnot_tree.root_committee().contains(&id)
}
fn is_member_of_leaf_committee(&self, id: NodeId) -> bool {
self.carnot_tree
.leaf_committees()
.values()
.any(|committee| committee.contains(&id))
}
fn is_child_of_root_committee(&self, id: NodeId) -> bool {
self.parent_committee(id) == self.root_committee()
}
fn parent_committee(&self, id: NodeId) -> Committee {
self.carnot_tree.parent_committee_from_member_id(&id)
}
fn child_committees(&self, id: NodeId) -> Vec<Committee> {
match self.carnot_tree.child_committees(&id) {
(None, None) => vec![],
(None, Some(c)) | (Some(c), None) => vec![std::iter::once(*c).collect()],
(Some(c1), Some(c2)) => vec![
std::iter::once(*c1).collect(),
std::iter::once(*c2).collect(),
],
}
}
fn leaf_committees(&self, _id: NodeId) -> Vec<Committee> {
self.carnot_tree
.leaf_committees()
.into_values()
.cloned()
.collect()
}
fn node_committee(&self, id: NodeId) -> Committee {
self.carnot_tree
.committees_by_member
.get(&id)
.and_then(|committee_index| self.carnot_tree.membership_committees.get(committee_index))
.cloned()
.unwrap_or_default()
}
fn next_leader(&self) -> NodeId {
let mut rng = StdRng::from_seed(self.entropy);
*self.nodes.choose(&mut rng).unwrap()
}
fn super_majority_threshold(&self, id: NodeId) -> usize {
if self.is_member_of_leaf_committee(id) {
return 0;
}
self.carnot_tree
.committee_by_member_id(&id)
.map(|c| (c.len() * 2 / 3) + 1)
.expect("node is not part of any committee")
}
fn leader_super_majority_threshold(&self, _id: NodeId) -> usize {
let root_committee = &self.carnot_tree.inner_committees[0];
let children = self.carnot_tree.child_committees(root_committee);
let children_size = children.0.map_or(0, |c| {
self.carnot_tree
.committee_by_committee_id(c)
.map_or(0, |c| c.len())
}) + children.1.map_or(0, |c| {
self.carnot_tree
.committee_by_committee_id(c)
.map_or(0, |c| c.len())
});
let root_size = self.root_committee().len();
let committee_size = root_size + children_size;
(committee_size * 2 / 3) + 1
}
fn update_leader_selection<F, E>(&self, f: F) -> Result<Self, E>
where
F: FnOnce(Self::LeaderSelection) -> Result<Self::LeaderSelection, E>,
{
match f(self.leader.clone()) {
Ok(leader_selection) => Ok(Self {
leader: leader_selection,
..self.clone()
}),
Err(e) => Err(e),
}
}
}
impl<L> TreeOverlay<L>
where
L: LeaderSelection + Send + Sync + 'static,
{
pub fn advance(&self, entropy: [u8; 32], leader: L) -> Self {
Self::new(TreeOverlaySettings {
nodes: self.nodes.clone(),
current_leader: self.next_leader(),
entropy,
number_of_committees: self.number_of_committees,
leader,
})
}
pub fn is_leader(&self, id: &NodeId) -> bool {
id == &self.current_leader
}
pub fn leader(&self) -> &NodeId {
&self.current_leader
}
}
#[cfg(test)]
mod tests {
use crate::overlay::RoundRobin;
use crate::Overlay;
use super::*;
use std::collections::HashSet;
#[test]
fn test_carnot_overlay_leader() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let overlay = TreeOverlay::new(TreeOverlaySettings {
nodes: nodes.clone(),
current_leader: nodes[0],
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
assert_eq!(*overlay.leader(), nodes[0]);
}
#[test]
fn test_next_leader_is_advance_current_leader() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let mut overlay = TreeOverlay::new(TreeOverlaySettings {
nodes: nodes.clone(),
current_leader: nodes[0],
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
let leader = overlay.next_leader();
overlay = overlay.advance([1; 32], RoundRobin::new());
assert_eq!(leader, *overlay.leader());
}
#[test]
fn test_root_committee() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let overlay = TreeOverlay::new(TreeOverlaySettings {
current_leader: nodes[0],
nodes,
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
let mut expected_root = HashSet::new();
expected_root.insert(overlay.nodes[9]);
expected_root.extend(overlay.nodes[0..3].iter());
assert_eq!(overlay.root_committee(), expected_root);
}
#[test]
fn test_leaf_committees() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let overlay = TreeOverlay::new(TreeOverlaySettings {
current_leader: nodes[0],
nodes,
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
let mut leaf_committees = overlay
.leaf_committees([0; 32])
.into_iter()
.map(|s| {
let mut vec = s.into_iter().collect::<Vec<_>>();
vec.sort();
vec
})
.collect::<Vec<_>>();
leaf_committees.sort();
let mut c1 = overlay.nodes[3..6].to_vec();
c1.sort();
let mut c2 = overlay.nodes[6..9].to_vec();
c2.sort();
let mut expected = vec![c1, c2];
expected.sort();
assert_eq!(leaf_committees, expected);
}
#[test]
fn test_super_majority_threshold_for_leaf() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let overlay = TreeOverlay::new(TreeOverlaySettings {
current_leader: nodes[0],
nodes,
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
assert_eq!(overlay.super_majority_threshold(overlay.nodes[8]), 0);
}
#[test]
fn test_super_majority_threshold_for_root_member() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let overlay = TreeOverlay::new(TreeOverlaySettings {
current_leader: nodes[0],
nodes,
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
assert_eq!(overlay.super_majority_threshold(overlay.nodes[0]), 3);
}
#[test]
fn test_leader_super_majority_threshold() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let overlay = TreeOverlay::new(TreeOverlaySettings {
nodes: nodes.clone(),
current_leader: nodes[0],
entropy: [0; 32],
number_of_committees: 3,
leader: RoundRobin::new(),
});
assert_eq!(overlay.leader_super_majority_threshold([0; 32]), 7);
}
}

View File

@ -0,0 +1,190 @@
use crate::{Committee, NodeId};
use blake2::{digest::typenum::U32, Blake2b, Digest};
use std::collections::{HashMap, HashSet};
fn blake2b_hash(committee: &Committee) -> [u8; 32] {
let mut hasher = Blake2b::<U32>::new();
let mut tmp = committee.iter().collect::<Vec<_>>();
tmp.sort();
for member in tmp {
hasher.update(member);
}
hasher.finalize().into()
}
#[derive(Debug, Clone)]
pub(super) struct Tree {
pub(super) inner_committees: Vec<NodeId>,
pub(super) membership_committees: HashMap<usize, Committee>,
pub(super) committee_id_to_index: HashMap<NodeId, usize>,
pub(super) committees_by_member: HashMap<NodeId, usize>,
}
impl Tree {
pub fn new(nodes: &[NodeId], number_of_committees: usize) -> Self {
assert!(number_of_committees > 0);
let (inner_committees, membership_committees) =
Self::build_committee_from_nodes_with_size(nodes, number_of_committees);
let committee_id_to_index = inner_committees
.iter()
.copied()
.enumerate()
.map(|(idx, c)| (c, idx))
.collect();
let committees_by_member = membership_committees
.iter()
.flat_map(|(committee, members)| members.iter().map(|member| (*member, *committee)))
.collect();
Self {
inner_committees,
membership_committees,
committee_id_to_index,
committees_by_member,
}
}
pub(super) fn build_committee_from_nodes_with_size(
nodes: &[NodeId],
number_of_committees: usize,
) -> (Vec<[u8; 32]>, HashMap<usize, Committee>) {
let committee_size = nodes.len() / number_of_committees;
let remainder = nodes.len() % number_of_committees;
let mut committees: Vec<HashSet<NodeId>> = (0..number_of_committees)
.map(|n| {
nodes[n * committee_size..(n + 1) * committee_size]
.iter()
.cloned()
.collect()
})
.collect();
// Refill committees with extra nodes
if remainder != 0 {
for i in 0..remainder {
let node = nodes[nodes.len() - remainder + i];
let committee_index = i % number_of_committees;
committees[committee_index].insert(node);
}
}
let hashes = committees.iter().map(blake2b_hash).collect::<Vec<_>>();
(hashes, committees.into_iter().enumerate().collect())
}
pub(super) fn parent_committee(&self, committee_id: &NodeId) -> Option<&[u8; 32]> {
if committee_id == &self.inner_committees[0] {
None
} else {
self.committee_id_to_index
.get(committee_id)
.map(|&idx| &self.inner_committees[(idx / 2).saturating_sub(1)])
}
}
pub(super) fn parent_committee_from_member_id(&self, id: &NodeId) -> Committee {
let Some(committee_id) = self.committee_id_by_member_id(id) else { return HashSet::new(); };
let Some(parent_id) = self.parent_committee(committee_id) else { return HashSet::new(); };
self.committee_by_committee_idx(self.committee_id_to_index[parent_id])
.cloned()
.unwrap_or_default()
}
pub(super) fn child_committees(
&self,
committee_id: &NodeId,
) -> (Option<&[u8; 32]>, Option<&[u8; 32]>) {
let Some(base) = self
.committee_id_to_index
.get(committee_id)
.map(|&idx| idx * 2) else { return (None, None); };
let first_child = base + 1;
let second_child = base + 2;
(
self.inner_committees.get(first_child),
self.inner_committees.get(second_child),
)
}
pub(super) fn leaf_committees(&self) -> HashMap<&[u8; 32], &Committee> {
let total_leafs = (self.inner_committees.len() + 1) / 2;
let mut leaf_committees = HashMap::new();
for i in (self.inner_committees.len() - total_leafs)..self.inner_committees.len() {
leaf_committees.insert(&self.inner_committees[i], &self.membership_committees[&i]);
}
leaf_committees
}
pub(super) fn root_committee(&self) -> &Committee {
&self.membership_committees[&0]
}
pub(super) fn committee_by_committee_idx(&self, committee_idx: usize) -> Option<&Committee> {
self.membership_committees.get(&committee_idx)
}
pub(super) fn committee_idx_by_member_id(&self, member_id: &NodeId) -> Option<usize> {
self.committees_by_member.get(member_id).copied()
}
pub(super) fn committee_id_by_member_id(&self, member_id: &NodeId) -> Option<&[u8; 32]> {
self.committees_by_member
.get(member_id)
.map(|&idx| &self.inner_committees[idx])
}
pub(super) fn committee_by_member_id(&self, member_id: &NodeId) -> Option<&Committee> {
self.committee_idx_by_member_id(member_id)
.and_then(|idx| self.committee_by_committee_idx(idx))
}
pub(super) fn committee_by_committee_id(&self, committee_id: &NodeId) -> Option<&Committee> {
self.committee_id_to_index
.get(committee_id)
.and_then(|&idx| self.committee_by_committee_idx(idx))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_carnot_tree_parenting() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let tree = Tree::new(&nodes, 3);
let root = &tree.inner_committees[0];
let one = &tree.inner_committees[1];
let two = &tree.inner_committees[2];
assert_eq!(tree.parent_committee(one), Some(root));
assert_eq!(tree.parent_committee(two), Some(root));
}
#[test]
fn test_carnot_tree_root_parenting() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let tree = Tree::new(&nodes, 3);
let root = &tree.inner_committees[0];
assert!(tree.parent_committee(root).is_none());
}
#[test]
fn test_carnot_tree_childs() {
let nodes: Vec<[u8; 32]> = (0..10).map(|i| [i as u8; 32]).collect();
let tree = Tree::new(&nodes, 3);
let root = &tree.inner_committees[0];
let one = &tree.inner_committees[1];
let two = &tree.inner_committees[2];
assert_eq!(tree.child_committees(root), (Some(one), Some(two)));
}
}