typer, json/toml, more network/node type, refactor
This commit is contained in:
parent
d677a4c78d
commit
6e96757d10
49
Readme.md
49
Readme.md
|
@ -1,45 +1,12 @@
|
|||
This repo contains the scripts to generate different network models for wakukurtosis runs.
|
||||
This repo contains scripts to generate network models (in JSON) and waku configuration files (in TOMLs) for wakukurtosis runs.
|
||||
|
||||
## run_kurtosis_tests.sh
|
||||
run_kurtosis_tests.sh will run kurtosis on a set of json files in a directory. It requires two arguments. First is a directory containing json files; other file types in the directory are ignored. Second is the github root/prefix of the kurtosis module you run the tests under.</br>
|
||||
|
||||
> usage: ./run_kurtosis_tests.sh <input_dir> <repo_prefix> </br>
|
||||
|
||||
Running this script is somewhat complicated; so follow the following instructions to a dot. You **WILL** require the main.star provided here. The main.star reads a input json and instantiates Waku nodes accordingly. The runs are repeated for each of the input json files under the specified directory.
|
||||
|
||||
#### step 0)
|
||||
symlink run_kurtosis_tests.sh to the root directory of your kurtosis module.</br>
|
||||
#### step 1)
|
||||
backup the your kurtosis module's own main.star. copy the main.star provided here to the root directory of your kurtosis module.</br>
|
||||
!!! WARNING: symlinking the main.star will NOT work !!!</br>
|
||||
#### step 3)
|
||||
put all the json files you want to use in a directory. Call it *Foo*</br>
|
||||
#### step 3)
|
||||
copy the *Foo* directory to the root of your kurtosis module</br>
|
||||
!!! WARNING: symlinking the directory will NOT work !!!</br>
|
||||
#### step 4)
|
||||
run this script in the root directory of the kurtosis module. provide the directory (*Foo*) and the github root/prefix of the kurtosis module as arguments to the script</br>
|
||||
|
||||
|
||||
## gen_jsons.sh
|
||||
gen_jsons.sh can generate given number of Waku networs and outputs them to a directory. Please make sure that the output directory exists; both relative and absolute paths work. The Wakunode parameters are generated at random; edit the MIN and MAX for finer control. The script requires bc & /dev/urandom.<br>
|
||||
|
||||
> usage: ./gen_jsons.sh <output_dir> <#json files needed> </br>
|
||||
|
||||
## generate_network.py
|
||||
generate_network.py can generate networks with specified number of nodes and topics. the network types currently supported is "configuration_model" and more are on the way. Use with Python3. Comment out the `#draw(fname, H)` line to visualise the generated graph.
|
||||
generate_network.py generates one network and per-node configuration files. The tool is configurable with specified number of nodes, topics, network types, node types. Use with Python3. Comment out the `#draw(fname, H)` line to visualise the generated graph.
|
||||
|
||||
> usage: generate_network [-h] [-o <file_name>] [-n <#nodes>] [-t <#topics>]
|
||||
[-T <type>] <br>
|
||||
>> </br>
|
||||
>> Generates and outputs the Waku network conforming to input parameters<//br>
|
||||
>> </br>
|
||||
>> optional arguments:</br>
|
||||
>>   -h, --help show this help message and exit</br>
|
||||
>>   -o <file_name>, --output <file_name> output json filename for the Waku network </br>
|
||||
>>   -n <#nodes>, --numnodes <#nodes> number of nodes in the Waku network </br>
|
||||
>>   -t <#topics>, --numtopics <#topics> number of topics in the Waku network </br>
|
||||
>>   -T <type>, --type <type> network type for the Waku network </br>
|
||||
>>   -p <#partitions>, --numparts <#partitions> number of partitions in the Waku network</br>
|
||||
>></br>
|
||||
>>The defaults are: -o "Topology.json"; -n 1; -t 1; -p 1; -T "configuration_model"</br>
|
||||
> usage: $./generate_network --help
|
||||
|
||||
## batch_gen.sh
|
||||
batch_gen.sh can generate given number of Waku networks and outputs them to a directory. Please make sure that the output directory does not exists; both relative and absolute paths work. The Wakunode parameters are generated at random; edit the MIN and MAX for finer control. The script requires bc & /dev/urandom.<br>
|
||||
|
||||
> usage: $./batch_gen.sh <output-dir> <#number of networks needed> </br>
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
#!/bin/sh
|
||||
|
||||
#MAX and MIN for topics and num nodes
|
||||
MIN=5
|
||||
MAX=100
|
||||
|
||||
#requires bc
|
||||
getrand(){
|
||||
orig=$(od -An -N1 -i /dev/urandom)
|
||||
range=`echo "$MIN + ($orig % ($MAX - $MIN + 1))" | bc`
|
||||
RANDOM=$range
|
||||
}
|
||||
|
||||
getrand1(){
|
||||
orig=$(od -An -N1 -i /dev/urandom)
|
||||
range=`echo "$MIN + ($orig % ($MAX - $MIN + 1))" | bc`
|
||||
return range
|
||||
#getrand1 # call the fun and use the return value
|
||||
#n=$?
|
||||
}
|
||||
|
||||
if [ "$#" -ne 2 ] || [ $2 -le 0 ] ; then
|
||||
echo "usage: $0 <output dir> <#json files needed>" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
path=$1
|
||||
nfiles=$2
|
||||
mkdir -p $path
|
||||
|
||||
echo "Ok, will generate $nfiles networks & put them under '$path'."
|
||||
|
||||
nwtype="NEWMANWATTSSTROGATZ"
|
||||
nodetype="DESKTOP"
|
||||
|
||||
|
||||
for i in $(seq $nfiles)
|
||||
do
|
||||
getrand
|
||||
n=$((RANDOM+1))
|
||||
getrand
|
||||
t=$((RANDOM+1))
|
||||
dirname="$path/$i/Waku"
|
||||
mkdir "$path/$i"
|
||||
echo "Generating ./generate_network.py --dirname $dirname --num-nodes $n --num-topics $t --nw-type $nwtype --node-type $nodetype --num-partitions 1"
|
||||
$(./generate_network.py --dirname $dirname --num-nodes $n --num-topics $t --nw-type $nwtype --node-type $nodetype --num-partitions 1)
|
||||
done
|
|
@ -4,79 +4,68 @@ import matplotlib.pyplot as plt
|
|||
import networkx as nx
|
||||
import random, math
|
||||
import json
|
||||
import argparse, os, sys
|
||||
import sys, os
|
||||
import string
|
||||
import typer
|
||||
from enum import Enum
|
||||
|
||||
# Consts
|
||||
class nw_types(Enum):
|
||||
configmodel = "CONFIGMODEL"
|
||||
scalefree = "SCALEFREE" # power law
|
||||
newmanwattsstrogatz = "NEWMANWATTSSTROGATZ" # mesh, smallworld
|
||||
barbell = "BARBELL" # partition
|
||||
balancedtree = "BALANCEDTREE" # committees?
|
||||
star = "STAR" # spof
|
||||
|
||||
class node_types(Enum):
|
||||
desktop = "DESKTOP"
|
||||
mobile = "MOBILE"
|
||||
|
||||
nw_fname = "network_data.json"
|
||||
prefix = "waku_"
|
||||
|
||||
### I/O related fns ###########################################################
|
||||
|
||||
# Dump to a json file
|
||||
def write_json(filename, data_2_dump):
|
||||
json.dump(data_2_dump, open(filename,'w'), indent=2)
|
||||
def write_json(dirname, json_dump):
|
||||
fname = os.path.join(dirname, nw_fname)
|
||||
json.dump(json_dump, open(fname,'w'), indent=2)
|
||||
|
||||
|
||||
# has trouble with non-integer/non-hashable keys
|
||||
def read_json(filename):
|
||||
with open(filename) as f:
|
||||
jdata = json.load(f)
|
||||
return nx.node_link_graph(jdata)
|
||||
def write_toml(dirname, node_name, toml):
|
||||
fname = os.path.join(dirname, node_name+ ".toml")
|
||||
f = open(fname, 'w')
|
||||
f.write(toml)
|
||||
f.close()
|
||||
|
||||
|
||||
# Draw the network and output the image to a file
|
||||
def draw(fname, H):
|
||||
def draw(dirname, H):
|
||||
nx.draw(H, pos=nx.kamada_kawai_layout(H), with_labels=True)
|
||||
fname = os.path.join(dirname, nw_fname)
|
||||
plt.savefig(os.path.splitext(fname)[0] + ".png", format="png")
|
||||
plt.show()
|
||||
|
||||
|
||||
# Initialize parser, set the defaults, and extract the options
|
||||
def get_options():
|
||||
parser = argparse.ArgumentParser(
|
||||
prog = 'generate_network',
|
||||
description = '''Generates and outputs
|
||||
the Waku network conforming to input parameters''',
|
||||
epilog = '''Defaults: -o "Topology.json";
|
||||
-n 1; -t 1; -p 1; -T "configuration_model"
|
||||
Supported nw types "configuration_model", "scalefree",
|
||||
"newman_watts_strogatz"''')
|
||||
parser.add_argument("-o", "--output",
|
||||
default='Topology.json', dest='fname',
|
||||
help='output json filename for the Waku network',
|
||||
type=str, metavar='<file_name>')
|
||||
parser.add_argument("-n", "--numnodes",
|
||||
default=1, dest='num_nodes',
|
||||
help='number of nodes in the Waku network',
|
||||
type=int, metavar='<#nodes>')
|
||||
parser.add_argument("-t", "--numtopics",
|
||||
default=1, dest='num_topics',
|
||||
help='number of topics in the Waku network',
|
||||
type=int, metavar='<#topics>')
|
||||
parser.add_argument("-T", "--type",
|
||||
default="configuration_model", dest='nw_type',
|
||||
help='network type of the Waku network',
|
||||
type=str, metavar='<type>')
|
||||
parser.add_argument("-p", "--numparts",
|
||||
default=1, dest='num_partitions',
|
||||
help='The number of partitions in the Waku network',
|
||||
type=int, metavar='<#partitions>')
|
||||
# parser.add_argument("-e", "--numedges",
|
||||
# default=1, dest='num_edges',
|
||||
# help='The number of edges in the Waku network',
|
||||
# type=int, metavar='#edges>')
|
||||
return parser.parse_args()
|
||||
# Has trouble with non-integer/non-hashable keys
|
||||
def read_json(fname):
|
||||
with open(fname) as f:
|
||||
jdata = json.load(f)
|
||||
return nx.node_link_graph(jdata)
|
||||
|
||||
|
||||
# Generate a random string (UC chars) of len n
|
||||
def generate_topic_string(n):
|
||||
rs = ""
|
||||
for _ in range(n):
|
||||
r = random.randint(65, 65 + 26 - 1) # generate a random UC char
|
||||
rs += (chr(r)) # append the char generated
|
||||
return rs
|
||||
### topics related fns ###########################################################
|
||||
|
||||
# Generate a random string of upper case chars
|
||||
def generate_random_string(n):
|
||||
return "".join(random.choice(string.ascii_uppercase) for _ in range(n))
|
||||
|
||||
|
||||
# Generate the topics - UC chars prefixed by "topic"
|
||||
# Generate the topics - topic followed by random UC chars - Eg, topic_XY"
|
||||
def generate_topics(num_topics):
|
||||
topics = []
|
||||
base = 26
|
||||
topic_len = int(math.log(num_topics)/math.log(base)) + 1
|
||||
topics = {i: f"topic_{generate_topic_string(topic_len)}" for i in range(num_topics)}
|
||||
topic_len = int(math.log(num_topics)/math.log(26)) + 1 # base is 26 - upper case letters
|
||||
topics = {i: f"topic_{generate_random_string(topic_len)}" for i in range(num_topics)}
|
||||
return topics
|
||||
|
||||
|
||||
|
@ -91,12 +80,13 @@ def get_random_sublist(topics):
|
|||
return sublist
|
||||
|
||||
|
||||
### network processing related fns ###########################################################
|
||||
|
||||
# Network Types
|
||||
# https://networkx.org/documentation/stable/reference/generated/networkx.generators.degree_seq.configuration_model.html
|
||||
def generate_config_model(n):
|
||||
#degrees = nx.random_powerlaw_tree_sequence(n, tries=10000)
|
||||
degrees = [random.randint(1, n) for i in range(n)]
|
||||
if (sum(degrees)) % 2 != 0: # adjust the degree to even
|
||||
if (sum(degrees)) % 2 != 0: # adjust the degree to be even
|
||||
degrees[-1] += 1
|
||||
return nx.configuration_model(degrees) # generate the graph
|
||||
|
||||
|
@ -105,79 +95,110 @@ def generate_scalefree_graph(n):
|
|||
return nx.scale_free_graph(n)
|
||||
|
||||
|
||||
# n must be larger than k
|
||||
# n must be larger than k=D=3
|
||||
def generate_newman_watts_strogatz_graph(n):
|
||||
return nx.newman_watts_strogatz_graph(n, 12, 0.5)
|
||||
return nx.newman_watts_strogatz_graph(n, 3, 0.5)
|
||||
|
||||
|
||||
def generate_barbell_graph(n):
|
||||
return nx.barbell_graph(int(n/2), 1)
|
||||
|
||||
|
||||
def generate_balanced_tree(n, fanout=3):
|
||||
height = int(math.log(n)/math.log(fanout))
|
||||
return nx.balanced_tree(fanout, height)
|
||||
|
||||
|
||||
def generate_star_graph(n):
|
||||
return nx.star_graph(n)
|
||||
|
||||
|
||||
# Generate the network from nw type
|
||||
def generate_network(num_nodes, nw_type, prefix):
|
||||
def generate_network(num_nodes, nw_type):
|
||||
G = nx.empty_graph()
|
||||
if nw_type == "configuration_model":
|
||||
if nw_type == nw_types.configmodel:
|
||||
G = generate_config_model(num_nodes)
|
||||
elif nw_type == "scalefree":
|
||||
elif nw_type == nw_types.scalefree:
|
||||
G = generate_scalefree_graph(num_nodes)
|
||||
elif nw_type == "newman_watts_strogatz":
|
||||
elif nw_type == nw_types.newmanwattsstrogatz:
|
||||
G = generate_newman_watts_strogatz_graph(num_nodes)
|
||||
elif nw_type == nw_types.barbell:
|
||||
G = generate_barbell_graph(num_nodes)
|
||||
elif nw_type == nw_types.balancedtree:
|
||||
G = generate_balanced_tree(num_nodes)
|
||||
elif nw_type == nw_types.star:
|
||||
G = generate_star_graph(num_nodes)
|
||||
else:
|
||||
print(nw_type +": Unsupported network type")
|
||||
sys.exit(1)
|
||||
H = postprocess_network(G, prefix)
|
||||
return H
|
||||
return postprocess_network(G)
|
||||
|
||||
|
||||
# used by generate_dump_data, *ought* to be global to handle partitions
|
||||
ports_shifted = 0
|
||||
def postprocess_network(G, prefix):
|
||||
# Label the generated network with prefix
|
||||
def postprocess_network(G):
|
||||
G = nx.Graph(G) # prune out parallel/multi edges
|
||||
G.remove_edges_from(nx.selfloop_edges(G)) # Removing self-loops
|
||||
# Labeling nodes to match waku containers
|
||||
G.remove_edges_from(nx.selfloop_edges(G)) # remove the self-loops
|
||||
mapping = {i: f"{prefix}{i}" for i in range(len(G))}
|
||||
return nx.relabel_nodes(G, mapping)
|
||||
return nx.relabel_nodes(G, mapping) # label the nodes
|
||||
|
||||
|
||||
# Generate dump data from the network and topics
|
||||
def generate_dump_data(H, topics):
|
||||
data_to_dump = {}
|
||||
global ports_shifted
|
||||
for node in H.nodes:
|
||||
data_to_dump[node] = {}
|
||||
data_to_dump[node]["ports-shift"] = ports_shifted
|
||||
ports_shifted += 1
|
||||
data_to_dump[node]["topics"] = get_random_sublist(topics)
|
||||
data_to_dump[node]["static-nodes"] = []
|
||||
for edge in H.edges(node):
|
||||
data_to_dump[node]["static-nodes"].append(edge[1])
|
||||
return data_to_dump
|
||||
### file format related fns ###########################################################
|
||||
|
||||
#Generate per node toml configs
|
||||
def generate_toml(topics, node_type=node_types.desktop):
|
||||
topic_str = " ". join(get_random_sublist(topics)) # topics as a space separated string
|
||||
if node_type == node_type.desktop:
|
||||
toml = "rpc-admin = true\nkeep-alive = true\n"
|
||||
elif node_type == node_type.mobile:
|
||||
toml = "rpc-admin = true\nkeep-alive = true\n"
|
||||
else:
|
||||
print(node_type +": Unsupported node type")
|
||||
sys.exit(1)
|
||||
toml += f"topics = \"{topic_str}\"\n"
|
||||
return toml
|
||||
|
||||
|
||||
def main():
|
||||
#extract the CLI arguments and assign params
|
||||
options = get_options()
|
||||
fname = options.fname
|
||||
num_nodes = options.num_nodes
|
||||
num_topics = options.num_topics
|
||||
nw_type = options.nw_type
|
||||
prefix = "waku_"
|
||||
num_partitions = options.num_partitions
|
||||
#num_edges = options.num_edges ## need to control num_edges?
|
||||
|
||||
if num_partitions > 1:
|
||||
print("-p",num_partitions,
|
||||
"Sorry, we do not yet support partitions")
|
||||
# Generates network-wide json and per-node toml and writes them
|
||||
def generate_and_write_files(dirname, num_topics, H):
|
||||
if not os.path.exists(dirname):
|
||||
os.mkdir(dirname)
|
||||
elif not os.path.isfile(dirname) and os.listdir(dirname):
|
||||
print(dirname +": exists and is not empty")
|
||||
sys.exit(1)
|
||||
elif os.path.isfile(dirname):
|
||||
print(dirname +": exists and is not a directory")
|
||||
sys.exit(1)
|
||||
|
||||
# Generate the network and postprocess it
|
||||
H = generate_network(num_nodes, nw_type, prefix)
|
||||
# Generate the topics
|
||||
topics = generate_topics(num_topics)
|
||||
# Generate the dump data
|
||||
dump_data = generate_dump_data(H, topics)
|
||||
# Dump the network in a json file
|
||||
write_json(fname, dump_data)
|
||||
# Display the graph
|
||||
draw(fname, H)
|
||||
json_dump = {}
|
||||
for node in H.nodes:
|
||||
write_toml(dirname, node, generate_toml(topics)) # per node toml
|
||||
json_dump[node] = {}
|
||||
json_dump[node]["static-nodes"] = []
|
||||
for edge in H.edges(node):
|
||||
json_dump[node]["static-nodes"].append(edge[1])
|
||||
write_json(dirname, json_dump) # network wide json
|
||||
|
||||
|
||||
### the main ###########################################################
|
||||
def main(
|
||||
dirname: str = "Waku", num_nodes: int = 3, num_topics: int = 1,
|
||||
nw_type: nw_types = "NEWMANWATTSSTROGATZ",
|
||||
node_type: node_types = "DESKTOP",
|
||||
num_partitions: int = 1):
|
||||
|
||||
if num_partitions > 1:
|
||||
print("-p",num_partitions, "Sorry, we do not yet support partitions")
|
||||
sys.exit(1)
|
||||
|
||||
# Generate the network and do post-process
|
||||
G = generate_network(num_nodes, nw_type)
|
||||
postprocess_network(G)
|
||||
|
||||
# Generate file format specific data structs and write the files; optionally, draw the network
|
||||
generate_and_write_files(dirname, num_topics, G)
|
||||
draw(dirname, G)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
typer.run(main)
|
||||
|
|
Loading…
Reference in New Issue