Rostyslav Tyshko 33934f1e05 fmt
2025-04-04 15:23:19 -04:00

389 lines
14 KiB
Rust

use aes_gcm::{aead::Aead, Aes256Gcm, Key, KeyInit};
use constants_types::{CipherText, Nonce};
use ephemeral_key_holder::EphemeralKeyHolder;
use k256::AffinePoint;
use log::info;
use secret_holders::{SeedHolder, TopSecretKeyHolder, UTXOSecretKeyHolder};
use storage::merkle_tree_public::TreeHashType;
use crate::account_core::PublicKey;
pub mod constants_types;
pub mod ephemeral_key_holder;
pub mod secret_holders;
#[derive(Clone)]
///Entrypoint to key management
pub struct AddressKeyHolder {
//Will be useful in future
#[allow(dead_code)]
top_secret_key_holder: TopSecretKeyHolder,
pub utxo_secret_key_holder: UTXOSecretKeyHolder,
pub address: TreeHashType,
pub nullifer_public_key: PublicKey,
pub viewing_public_key: PublicKey,
}
impl AddressKeyHolder {
pub fn new_os_random() -> Self {
//Currently dropping SeedHolder at the end of initialization.
//Now entirely sure if we need it in the future.
let seed_holder = SeedHolder::new_os_random();
let top_secret_key_holder = seed_holder.produce_top_secret_key_holder();
let utxo_secret_key_holder = top_secret_key_holder.produce_utxo_secret_holder();
let address = utxo_secret_key_holder.generate_address();
let nullifer_public_key = utxo_secret_key_holder.generate_nullifier_public_key();
let viewing_public_key = utxo_secret_key_holder.generate_viewing_public_key();
Self {
top_secret_key_holder,
utxo_secret_key_holder,
address,
nullifer_public_key,
viewing_public_key,
}
}
pub fn calculate_shared_secret_receiver(
&self,
ephemeral_public_key_sender: AffinePoint,
) -> AffinePoint {
(ephemeral_public_key_sender * self.utxo_secret_key_holder.viewing_secret_key).into()
}
pub fn produce_ephemeral_key_holder(&self) -> EphemeralKeyHolder {
EphemeralKeyHolder::new_os_random()
}
pub fn decrypt_data(
&self,
ephemeral_public_key_sender: AffinePoint,
ciphertext: CipherText,
nonce: Nonce,
) -> Result<Vec<u8>, aes_gcm::Error> {
let key_point = self.calculate_shared_secret_receiver(ephemeral_public_key_sender);
let binding = serde_json::to_vec(&key_point).unwrap();
let key_raw = &binding.as_slice()[..32];
let key_raw_adjust: [u8; 32] = key_raw.try_into().unwrap();
let key: Key<Aes256Gcm> = key_raw_adjust.into();
let cipher = Aes256Gcm::new(&key);
cipher.decrypt(&nonce, ciphertext.as_slice())
}
pub fn log(&self) {
info!(
"Secret spending key is {:?}",
hex::encode(
serde_json::to_vec(&self.top_secret_key_holder.secret_spending_key).unwrap()
),
);
info!(
"Nulifier secret key is {:?}",
hex::encode(
serde_json::to_vec(&self.utxo_secret_key_holder.nullifier_secret_key).unwrap()
),
);
info!(
"Viewing secret key is {:?}",
hex::encode(
serde_json::to_vec(&self.utxo_secret_key_holder.viewing_secret_key).unwrap()
),
);
info!(
"Nullifier public key is {:?}",
hex::encode(serde_json::to_vec(&self.nullifer_public_key).unwrap()),
);
info!(
"Viewing public key is {:?}",
hex::encode(serde_json::to_vec(&self.viewing_public_key).unwrap()),
);
}
}
#[cfg(test)]
mod tests {
use aes_gcm::{
aead::{Aead, KeyInit, OsRng},
Aes256Gcm,
};
use constants_types::{CipherText, Nonce};
use constants_types::{NULLIFIER_SECRET_CONST, VIEVING_SECRET_CONST};
use elliptic_curve::ff::Field;
use elliptic_curve::group::prime::PrimeCurveAffine;
use elliptic_curve::group::GroupEncoding;
use k256::{AffinePoint, ProjectivePoint, Scalar};
use super::*;
#[test]
fn test_new_os_random() {
// Ensure that a new AddressKeyHolder instance can be created without errors.
let address_key_holder = AddressKeyHolder::new_os_random();
// Check that key holder fields are initialized with expected types
assert!(!Into::<bool>::into(
address_key_holder.nullifer_public_key.is_identity()
));
assert!(!Into::<bool>::into(
address_key_holder.viewing_public_key.is_identity()
));
}
#[test]
fn test_calculate_shared_secret_receiver() {
let address_key_holder = AddressKeyHolder::new_os_random();
// Generate a random ephemeral public key sender
let scalar = Scalar::random(&mut OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
// Calculate shared secret
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Ensure the shared secret is not an identity point (suggesting non-zero output)
assert!(!Into::<bool>::into(shared_secret.is_identity()));
}
#[test]
fn test_decrypt_data() {
let address_key_holder = AddressKeyHolder::new_os_random();
// Generate an ephemeral key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = address_key_holder
.produce_ephemeral_key_holder()
.generate_ephemeral_public_key();
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Prepare the encryption key from shared secret
let key_raw = serde_json::to_vec(&shared_secret).unwrap();
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
let key: Key<Aes256Gcm> = key_raw_adjust.into();
let cipher = Aes256Gcm::new(&key);
// Encrypt sample data
let nonce = Nonce::from_slice(b"unique nonce");
let plaintext = b"Sensitive data";
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Attempt decryption
let decrypted_data: Vec<u8> = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(ciphertext),
nonce.clone(),
)
.unwrap();
// Verify decryption is successful and matches original plaintext
assert_eq!(decrypted_data, plaintext);
}
#[test]
fn test_new_os_random_initialization() {
// Ensure that AddressKeyHolder is initialized correctly
let address_key_holder = AddressKeyHolder::new_os_random();
// Check that key holder fields are initialized with expected types and values
assert!(!Into::<bool>::into(
address_key_holder.nullifer_public_key.is_identity()
));
assert!(!Into::<bool>::into(
address_key_holder.viewing_public_key.is_identity()
));
assert!(address_key_holder.address.as_slice().len() > 0); // Assume TreeHashType has non-zero length for a valid address
}
#[test]
fn test_calculate_shared_secret_with_identity_point() {
let address_key_holder = AddressKeyHolder::new_os_random();
// Use identity point as ephemeral public key
let identity_point = AffinePoint::identity();
// Calculate shared secret
let shared_secret = address_key_holder.calculate_shared_secret_receiver(identity_point);
// The shared secret with the identity point should also result in the identity point
assert!(Into::<bool>::into(shared_secret.is_identity()));
}
#[test]
#[should_panic]
fn test_decrypt_data_with_incorrect_nonce() {
let address_key_holder = AddressKeyHolder::new_os_random();
// Generate ephemeral public key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Prepare the encryption key from shared secret
let key_raw = serde_json::to_vec(&shared_secret).unwrap();
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
let key: Key<Aes256Gcm> = key_raw_adjust.into();
let cipher = Aes256Gcm::new(&key);
// Encrypt sample data with a specific nonce
let nonce = Nonce::from_slice(b"unique nonce");
let plaintext = b"Sensitive data";
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Attempt decryption with an incorrect nonce
let incorrect_nonce = Nonce::from_slice(b"wrong nonce");
let decrypted_data = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(ciphertext.clone()),
incorrect_nonce.clone(),
)
.unwrap();
// The decryption should fail or produce incorrect output due to nonce mismatch
assert_ne!(decrypted_data, plaintext);
}
#[test]
#[should_panic]
fn test_decrypt_data_with_incorrect_ciphertext() {
let address_key_holder = AddressKeyHolder::new_os_random();
// Generate ephemeral public key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Prepare the encryption key from shared secret
let key_raw = serde_json::to_vec(&shared_secret).unwrap();
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
let key: Key<Aes256Gcm> = key_raw_adjust.into();
let cipher = Aes256Gcm::new(&key);
// Encrypt sample data
let nonce = Nonce::from_slice(b"unique nonce");
let plaintext = b"Sensitive data";
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Tamper with the ciphertext to simulate corruption
let mut corrupted_ciphertext = ciphertext.clone();
corrupted_ciphertext[0] ^= 1; // Flip a bit in the ciphertext
// Attempt decryption
let result = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(corrupted_ciphertext),
nonce.clone(),
)
.unwrap();
// The decryption should fail or produce incorrect output due to tampered ciphertext
assert_ne!(result, plaintext);
}
#[test]
fn test_encryption_decryption_round_trip() {
let address_key_holder = AddressKeyHolder::new_os_random();
// Generate ephemeral key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
// Encrypt sample data
let plaintext = b"Round-trip test data";
let nonce = Nonce::from_slice(b"unique nonce");
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Prepare the encryption key from shared secret
let key_raw = serde_json::to_vec(&shared_secret).unwrap();
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
let key: Key<Aes256Gcm> = key_raw_adjust.into();
let cipher = Aes256Gcm::new(&key);
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Decrypt the data using the `AddressKeyHolder` instance
let decrypted_data = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(ciphertext),
nonce.clone(),
)
.unwrap();
// Verify the decrypted data matches the original plaintext
assert_eq!(decrypted_data, plaintext);
}
#[test]
fn key_generation_test() {
let seed_holder = SeedHolder::new_os_random();
let top_secret_key_holder = seed_holder.produce_top_secret_key_holder();
let utxo_secret_key_holder = top_secret_key_holder.produce_utxo_secret_holder();
let address = utxo_secret_key_holder.generate_address();
let nullifer_public_key = utxo_secret_key_holder.generate_nullifier_public_key();
let viewing_public_key = utxo_secret_key_holder.generate_viewing_public_key();
println!("======Prerequisites======");
println!();
println!(
"Group generator {:?}",
hex::encode(serde_json::to_vec(&AffinePoint::GENERATOR).unwrap())
);
println!(
"Nullifier constant {:?}",
hex::encode(NULLIFIER_SECRET_CONST)
);
println!("Viewing constatnt {:?}", hex::encode(VIEVING_SECRET_CONST));
println!();
println!("======Holders======");
println!();
println!("{seed_holder:?}");
println!("{top_secret_key_holder:?}");
println!("{utxo_secret_key_holder:?}");
println!();
println!("======Public data======");
println!();
println!("Address{:?}", hex::encode(address));
println!(
"Nulifier public key {:?}",
hex::encode(serde_json::to_vec(&nullifer_public_key).unwrap())
);
println!(
"Viewing public key {:?}",
hex::encode(serde_json::to_vec(&viewing_public_key).unwrap())
);
}
}