361 lines
12 KiB
Rust

use aes_gcm::{aead::Aead, Aes256Gcm, KeyInit};
use common::merkle_tree_public::TreeHashType;
use elliptic_curve::group::GroupEncoding;
use elliptic_curve::point::AffineCoordinates;
use k256::AffinePoint;
use log::info;
use secret_holders::{PrivateKeyHolder, SeedHolder, TopSecretKeyHolder};
use serde::{Deserialize, Serialize};
use sha2::{digest::FixedOutput, Digest};
use types::{CipherText, Nonce};
use crate::key_protocol_core::PublicKey;
pub type PublicAccountSigningKey = [u8; 32];
pub mod ephemeral_key_holder;
pub mod secret_holders;
pub mod types;
#[derive(Serialize, Deserialize, Clone, Debug)]
///Entrypoint to key management
pub struct KeyChain {
top_secret_key_holder: TopSecretKeyHolder,
pub private_key_holder: PrivateKeyHolder,
pub nullifer_public_key: [u8; 32],
pub incoming_viewing_public_key: PublicKey,
}
impl KeyChain {
pub fn new_os_random() -> Self {
//Currently dropping SeedHolder at the end of initialization.
//Now entirely sure if we need it in the future.
let seed_holder = SeedHolder::new_os_random();
let top_secret_key_holder = seed_holder.produce_top_secret_key_holder();
let private_key_holder = top_secret_key_holder.produce_private_key_holder();
let nullifer_public_key = private_key_holder.generate_nullifier_public_key();
let incoming_viewing_public_key = private_key_holder.generate_incoming_viewing_public_key();
Self {
top_secret_key_holder,
private_key_holder,
nullifer_public_key,
incoming_viewing_public_key,
}
}
pub fn produce_user_address(&self) -> [u8; 32] {
let mut hasher = sha2::Sha256::new();
hasher.update(self.nullifer_public_key);
hasher.update(self.incoming_viewing_public_key.to_bytes());
<TreeHashType>::from(hasher.finalize_fixed())
}
pub fn calculate_shared_secret_receiver(
&self,
ephemeral_public_key_sender: AffinePoint,
) -> AffinePoint {
(ephemeral_public_key_sender
* self
.top_secret_key_holder
.generate_incloming_viewing_secret_key())
.into()
}
pub fn decrypt_data(
&self,
ephemeral_public_key_sender: AffinePoint,
ciphertext: CipherText,
nonce: Nonce,
) -> Result<Vec<u8>, aes_gcm::Error> {
let shared_secret = self.calculate_shared_secret_receiver(ephemeral_public_key_sender);
let cipher = Aes256Gcm::new(&shared_secret.x());
cipher.decrypt(&nonce, ciphertext.as_slice())
}
pub fn log(&self) {
info!(
"Secret spending key is {:?}",
hex::encode(
serde_json::to_vec(&self.top_secret_key_holder.secret_spending_key).unwrap()
),
);
info!(
"Nulifier secret key is {:?}",
hex::encode(serde_json::to_vec(&self.private_key_holder.nullifier_secret_key).unwrap()),
);
info!(
"Viewing secret key is {:?}",
hex::encode(
serde_json::to_vec(&self.private_key_holder.incoming_viewing_secret_key).unwrap()
),
);
info!(
"Viewing secret key is {:?}",
hex::encode(
serde_json::to_vec(&self.private_key_holder.outgoing_viewing_secret_key).unwrap()
),
);
info!(
"Nullifier public key is {:?}",
hex::encode(serde_json::to_vec(&self.nullifer_public_key).unwrap()),
);
info!(
"Viewing public key is {:?}",
hex::encode(serde_json::to_vec(&self.incoming_viewing_public_key).unwrap()),
);
}
}
#[cfg(test)]
mod tests {
use aes_gcm::{
Aes256Gcm,
aead::{Aead, KeyInit, OsRng},
};
use elliptic_curve::ff::Field;
use elliptic_curve::group::prime::PrimeCurveAffine;
use elliptic_curve::point::AffineCoordinates;
use k256::{AffinePoint, ProjectivePoint, Scalar};
use types::{CipherText, Nonce};
use crate::key_management::ephemeral_key_holder::EphemeralKeyHolder;
use super::*;
#[test]
fn test_new_os_random() {
// Ensure that a new KeyChain instance can be created without errors.
let address_key_holder = KeyChain::new_os_random();
// Check that key holder fields are initialized with expected types
assert_ne!(address_key_holder.nullifer_public_key, [0u8; 32]);
assert!(!Into::<bool>::into(
address_key_holder.incoming_viewing_public_key.is_identity()
));
}
#[test]
fn test_calculate_shared_secret_receiver() {
let address_key_holder = KeyChain::new_os_random();
// Generate a random ephemeral public key sender
let scalar = Scalar::random(&mut OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::GENERATOR * scalar).to_affine();
// Calculate shared secret
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Ensure the shared secret is not an identity point (suggesting non-zero output)
assert!(!Into::<bool>::into(shared_secret.is_identity()));
}
#[test]
fn test_decrypt_data() {
let address_key_holder = KeyChain::new_os_random();
let test_receiver_nullifier_public_key = [42; 32];
let sender_outgoing_viewing_key = address_key_holder
.top_secret_key_holder
.generate_outgoing_viewing_secret_key();
let nonce = 0;
// Generate an ephemeral key and shared secret
let ephemeral_public_key_sender = EphemeralKeyHolder::new(
test_receiver_nullifier_public_key,
sender_outgoing_viewing_key,
nonce,
)
.generate_ephemeral_public_key();
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Encrypt sample data
let cipher = Aes256Gcm::new(&shared_secret.x());
let nonce = Nonce::from_slice(b"unique nonce");
let plaintext = b"Sensitive data";
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Attempt decryption
let decrypted_data: Vec<u8> = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(ciphertext),
*nonce,
)
.unwrap();
// Verify decryption is successful and matches original plaintext
assert_eq!(decrypted_data, plaintext);
}
#[test]
fn test_calculate_shared_secret_with_identity_point() {
let address_key_holder = KeyChain::new_os_random();
// Use identity point as ephemeral public key
let identity_point = AffinePoint::identity();
// Calculate shared secret
let shared_secret = address_key_holder.calculate_shared_secret_receiver(identity_point);
// The shared secret with the identity point should also result in the identity point
assert!(Into::<bool>::into(shared_secret.is_identity()));
}
#[test]
#[should_panic]
fn test_decrypt_data_with_incorrect_nonce() {
let address_key_holder = KeyChain::new_os_random();
// Generate ephemeral public key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::GENERATOR * scalar).to_affine();
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Encrypt sample data with a specific nonce
let cipher = Aes256Gcm::new(&shared_secret.x());
let nonce = Nonce::from_slice(b"unique nonce");
let plaintext = b"Sensitive data";
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Attempt decryption with an incorrect nonce
let incorrect_nonce = Nonce::from_slice(b"wrong nonce");
let decrypted_data = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(ciphertext.clone()),
*incorrect_nonce,
)
.unwrap();
// The decryption should fail or produce incorrect output due to nonce mismatch
assert_ne!(decrypted_data, plaintext);
}
#[test]
#[should_panic]
fn test_decrypt_data_with_incorrect_ciphertext() {
let address_key_holder = KeyChain::new_os_random();
// Generate ephemeral public key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::GENERATOR * scalar).to_affine();
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
// Encrypt sample data
let cipher = Aes256Gcm::new(&shared_secret.x());
let nonce = Nonce::from_slice(b"unique nonce");
let plaintext = b"Sensitive data";
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Tamper with the ciphertext to simulate corruption
let mut corrupted_ciphertext = ciphertext.clone();
corrupted_ciphertext[0] ^= 1; // Flip a bit in the ciphertext
// Attempt decryption
let result = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(corrupted_ciphertext),
*nonce,
)
.unwrap();
// The decryption should fail or produce incorrect output due to tampered ciphertext
assert_ne!(result, plaintext);
}
#[test]
fn test_encryption_decryption_round_trip() {
let address_key_holder = KeyChain::new_os_random();
// Generate ephemeral key and shared secret
let scalar = Scalar::random(OsRng);
let ephemeral_public_key_sender = (ProjectivePoint::GENERATOR * scalar).to_affine();
// Encrypt sample data
let plaintext = b"Round-trip test data";
let nonce = Nonce::from_slice(b"unique nonce");
let shared_secret =
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
let cipher = Aes256Gcm::new(&shared_secret.x());
let ciphertext = cipher
.encrypt(nonce, plaintext.as_ref())
.expect("encryption failure");
// Decrypt the data using the `KeyChain` instance
let decrypted_data = address_key_holder
.decrypt_data(
ephemeral_public_key_sender,
CipherText::from(ciphertext),
*nonce,
)
.unwrap();
// Verify the decrypted data matches the original plaintext
assert_eq!(decrypted_data, plaintext);
}
#[test]
fn key_generation_test() {
let seed_holder = SeedHolder::new_os_random();
let top_secret_key_holder = seed_holder.produce_top_secret_key_holder();
let utxo_secret_key_holder = top_secret_key_holder.produce_private_key_holder();
let nullifer_public_key = utxo_secret_key_holder.generate_nullifier_public_key();
let viewing_public_key = utxo_secret_key_holder.generate_incoming_viewing_public_key();
let pub_account_signing_key = nssa::PrivateKey::new_os_random();
let public_key = nssa::PublicKey::new_from_private_key(&pub_account_signing_key);
let address = nssa::Address::from(&public_key);
println!("======Prerequisites======");
println!();
println!(
"Group generator {:?}",
hex::encode(serde_json::to_vec(&AffinePoint::GENERATOR).unwrap())
);
println!();
println!("======Holders======");
println!();
println!("{seed_holder:?}");
println!("{top_secret_key_holder:?}");
println!("{utxo_secret_key_holder:?}");
println!();
println!("======Public data======");
println!();
println!("Address{:?}", hex::encode(address.value()));
println!(
"Nulifier public key {:?}",
hex::encode(serde_json::to_vec(&nullifer_public_key).unwrap())
);
println!(
"Viewing public key {:?}",
hex::encode(serde_json::to_vec(&viewing_public_key).unwrap())
);
}
}