lssa/key_protocol/src/key_management/secret_holders.rs
2026-02-12 10:33:00 -05:00

175 lines
5.1 KiB
Rust

use bip39::Mnemonic;
use common::HashType;
use nssa_core::{
NullifierPublicKey, NullifierSecretKey,
encryption::{Scalar, ViewingPublicKey},
};
use rand::{RngCore, rngs::OsRng};
use serde::{Deserialize, Serialize};
use sha2::{Digest, digest::FixedOutput};
const NSSA_ENTROPY_BYTES: [u8; 32] = [0; 32];
#[derive(Debug)]
/// Seed holder. Non-clonable to ensure that different holders use different seeds.
/// Produces `TopSecretKeyHolder` objects.
pub struct SeedHolder {
// ToDo: Needs to be vec as serde derives is not implemented for [u8; 64]
pub(crate) seed: Vec<u8>,
}
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
/// Secret spending key object. Can produce `PrivateKeyHolder` objects.
pub struct SecretSpendingKey(pub(crate) [u8; 32]);
pub type ViewingSecretKey = Scalar;
#[derive(Serialize, Deserialize, Debug, Clone)]
/// Private key holder. Produces public keys. Can produce account_id. Can produce shared secret for
/// recepient.
pub struct PrivateKeyHolder {
pub nullifier_secret_key: NullifierSecretKey,
pub(crate) viewing_secret_key: ViewingSecretKey,
}
impl SeedHolder {
pub fn new_os_random() -> Self {
let mut enthopy_bytes: [u8; 32] = [0; 32];
OsRng.fill_bytes(&mut enthopy_bytes);
let mnemonic = Mnemonic::from_entropy(&enthopy_bytes)
.expect("Enthropy must be a multiple of 32 bytes");
let seed_wide = mnemonic.to_seed("mnemonic");
Self {
seed: seed_wide.to_vec(),
}
}
pub fn new_mnemonic(passphrase: String) -> Self {
let mnemonic = Mnemonic::from_entropy(&NSSA_ENTROPY_BYTES)
.expect("Enthropy must be a multiple of 32 bytes");
let seed_wide = mnemonic.to_seed(passphrase);
Self {
seed: seed_wide.to_vec(),
}
}
pub fn generate_secret_spending_key_hash(&self) -> HashType {
let mut hash = hmac_sha512::HMAC::mac(&self.seed, "NSSA_seed");
for _ in 1..2048 {
hash = hmac_sha512::HMAC::mac(hash, "NSSA_seed");
}
// Safe unwrap
HashType(*hash.first_chunk::<32>().unwrap())
}
pub fn produce_top_secret_key_holder(&self) -> SecretSpendingKey {
SecretSpendingKey(self.generate_secret_spending_key_hash().into())
}
}
impl SecretSpendingKey {
pub fn generate_nullifier_secret_key(&self, index: Option<u32>) -> NullifierSecretKey {
let index = match index {
None => 0u32,
_ => index.expect("Expect a valid u32"),
};
const PREFIX: &[u8; 8] = b"LEE/keys";
const SUFFIX_1: &[u8; 1] = &[1];
const SUFFIX_2: &[u8; 19] = &[0; 19];
let mut hasher = sha2::Sha256::new();
hasher.update(PREFIX);
hasher.update(self.0);
hasher.update(SUFFIX_1);
hasher.update(index.to_le_bytes());
hasher.update(SUFFIX_2);
<NullifierSecretKey>::from(hasher.finalize_fixed())
}
pub fn generate_viewing_secret_key(&self, index: Option<u32>) -> ViewingSecretKey {
let index = match index {
None => 0u32,
_ => index.expect("Expect a valid u32"),
};
const PREFIX: &[u8; 8] = b"LEE/keys";
const SUFFIX_1: &[u8; 1] = &[2];
const SUFFIX_2: &[u8; 19] = &[0; 19];
let mut hasher = sha2::Sha256::new();
hasher.update(PREFIX);
hasher.update(self.0);
hasher.update(SUFFIX_1);
hasher.update(index.to_le_bytes());
hasher.update(SUFFIX_2);
hasher.finalize_fixed().into()
}
pub fn produce_private_key_holder(&self, index: Option<u32>) -> PrivateKeyHolder {
PrivateKeyHolder {
nullifier_secret_key: self.generate_nullifier_secret_key(index),
viewing_secret_key: self.generate_viewing_secret_key(index),
}
}
}
impl PrivateKeyHolder {
pub fn generate_nullifier_public_key(&self) -> NullifierPublicKey {
(&self.nullifier_secret_key).into()
}
pub fn generate_viewing_public_key(&self) -> ViewingPublicKey {
ViewingPublicKey::from_scalar(self.viewing_secret_key)
}
}
#[cfg(test)]
mod tests {
use super::*;
// TODO? are these necessary?
#[test]
fn seed_generation_test() {
let seed_holder = SeedHolder::new_os_random();
assert_eq!(seed_holder.seed.len(), 64);
}
#[test]
fn ssk_generation_test() {
let seed_holder = SeedHolder::new_os_random();
assert_eq!(seed_holder.seed.len(), 64);
let _ = seed_holder.generate_secret_spending_key_hash();
}
#[test]
fn ivs_generation_test() {
let seed_holder = SeedHolder::new_os_random();
assert_eq!(seed_holder.seed.len(), 64);
let top_secret_key_holder = seed_holder.produce_top_secret_key_holder();
let _ = top_secret_key_holder.generate_viewing_secret_key(None);
}
#[test]
fn two_seeds_generated_same_from_same_mnemonic() {
let mnemonic = "test_pass";
let seed_holder1 = SeedHolder::new_mnemonic(mnemonic.to_string());
let seed_holder2 = SeedHolder::new_mnemonic(mnemonic.to_string());
assert_eq!(seed_holder1.seed, seed_holder2.seed);
}
}