2025-12-22 19:34:47 +02:00

540 lines
18 KiB
Rust

use common::{error::ExecutionFailureKind, rpc_primitives::requests::SendTxResponse};
use nssa::{AccountId, ProgramId, program::Program};
use nssa_core::program::PdaSeed;
use crate::{TokenHolding, WalletCore};
fn compute_pool_pda(
amm_program_id: ProgramId,
definition_token_a_id: AccountId,
definition_token_b_id: AccountId,
) -> AccountId {
AccountId::from((
&amm_program_id,
&compute_pool_pda_seed(definition_token_a_id, definition_token_b_id),
))
}
fn compute_pool_pda_seed(
definition_token_a_id: AccountId,
definition_token_b_id: AccountId,
) -> PdaSeed {
use risc0_zkvm::sha::{Impl, Sha256};
let mut i: usize = 0;
let (token_1, token_2) = loop {
if definition_token_a_id.value()[i] > definition_token_b_id.value()[i] {
let token_1 = definition_token_a_id;
let token_2 = definition_token_b_id;
break (token_1, token_2);
} else if definition_token_a_id.value()[i] < definition_token_b_id.value()[i] {
let token_1 = definition_token_b_id;
let token_2 = definition_token_a_id;
break (token_1, token_2);
}
if i == 32 {
panic!("Definitions match");
} else {
i += 1;
}
};
let mut bytes = [0; 64];
bytes[0..32].copy_from_slice(&token_1.to_bytes());
bytes[32..].copy_from_slice(&token_2.to_bytes());
PdaSeed::new(
Impl::hash_bytes(&bytes)
.as_bytes()
.try_into()
.expect("Hash output must be exactly 32 bytes long"),
)
}
fn compute_vault_pda(
amm_program_id: ProgramId,
pool_id: AccountId,
definition_token_id: AccountId,
) -> AccountId {
AccountId::from((
&amm_program_id,
&compute_vault_pda_seed(pool_id, definition_token_id),
))
}
fn compute_vault_pda_seed(pool_id: AccountId, definition_token_id: AccountId) -> PdaSeed {
use risc0_zkvm::sha::{Impl, Sha256};
let mut bytes = [0; 64];
bytes[0..32].copy_from_slice(&pool_id.to_bytes());
bytes[32..].copy_from_slice(&definition_token_id.to_bytes());
PdaSeed::new(
Impl::hash_bytes(&bytes)
.as_bytes()
.try_into()
.expect("Hash output must be exactly 32 bytes long"),
)
}
fn compute_liquidity_token_pda(amm_program_id: ProgramId, pool_id: AccountId) -> AccountId {
AccountId::from((&amm_program_id, &compute_liquidity_token_pda_seed(pool_id)))
}
fn compute_liquidity_token_pda_seed(pool_id: AccountId) -> PdaSeed {
use risc0_zkvm::sha::{Impl, Sha256};
let mut bytes = [0; 64];
bytes[0..32].copy_from_slice(&pool_id.to_bytes());
bytes[32..].copy_from_slice(&[0; 32]);
PdaSeed::new(
Impl::hash_bytes(&bytes)
.as_bytes()
.try_into()
.expect("Hash output must be exactly 32 bytes long"),
)
}
pub struct Amm<'w>(pub &'w WalletCore);
impl Amm<'_> {
pub async fn send_new_definition(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
user_holding_lp: AccountId,
balance_a: u128,
balance_b: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) = amm_program_preparation_definition(balance_a, balance_b);
let amm_program_id = Program::amm().id();
let user_a_acc = self
.0
.get_account_public(user_holding_a)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let user_b_acc = self
.0
.get_account_public(user_holding_b)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
pool_lp,
user_holding_a,
user_holding_b,
user_holding_lp,
];
let nonces = self
.0
.get_accounts_nonces(vec![user_holding_a, user_holding_b])
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let signing_key_a = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_a)
.ok_or(ExecutionFailureKind::KeyNotFoundError)?;
let signing_key_b = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_b)
.ok_or(ExecutionFailureKind::KeyNotFoundError)?;
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set = nssa::public_transaction::WitnessSet::for_message(
&message,
&[signing_key_a, signing_key_b],
);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
pub async fn send_swap(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
amount_in: u128,
min_amount_out: u128,
token_definition_id: AccountId,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) =
amm_program_preparation_swap(amount_in, min_amount_out, token_definition_id);
let amm_program_id = Program::amm().id();
let user_a_acc = self
.0
.get_account_public(user_holding_a)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let user_b_acc = self
.0
.get_account_public(user_holding_b)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_b))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
user_holding_a,
user_holding_b,
];
let account_id_auth;
// Checking, which account are associated with TokenDefinition
let token_holder_acc_a = self
.0
.get_account_public(user_holding_a)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let token_holder_acc_b = self
.0
.get_account_public(user_holding_b)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let token_holder_a = TokenHolding::parse(&token_holder_acc_a.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?;
let token_holder_b = TokenHolding::parse(&token_holder_acc_b.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_b))?;
if token_holder_a.definition_id == token_definition_id {
account_id_auth = user_holding_a;
} else if token_holder_b.definition_id == token_definition_id {
account_id_auth = user_holding_b;
} else {
return Err(ExecutionFailureKind::AccountDataError(token_definition_id));
}
let nonces = self
.0
.get_accounts_nonces(vec![account_id_auth])
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let signing_key = self
.0
.storage
.user_data
.get_pub_account_signing_key(&account_id_auth)
.ok_or(ExecutionFailureKind::KeyNotFoundError)?;
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set =
nssa::public_transaction::WitnessSet::for_message(&message, &[signing_key]);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
pub async fn send_add_liquidity(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
user_holding_lp: AccountId,
min_amount_lp: u128,
max_amount_a: u128,
max_amount_b: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) =
amm_program_preparation_add_liq(min_amount_lp, max_amount_a, max_amount_b);
let amm_program_id = Program::amm().id();
let user_a_acc = self
.0
.get_account_public(user_holding_a)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let user_b_acc = self
.0
.get_account_public(user_holding_b)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
pool_lp,
user_holding_a,
user_holding_b,
user_holding_lp,
];
let nonces = self
.0
.get_accounts_nonces(vec![user_holding_a, user_holding_b])
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let signing_key_a = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_a)
.ok_or(ExecutionFailureKind::KeyNotFoundError)?;
let signing_key_b = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_b)
.ok_or(ExecutionFailureKind::KeyNotFoundError)?;
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set = nssa::public_transaction::WitnessSet::for_message(
&message,
&[signing_key_a, signing_key_b],
);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
pub async fn send_remove_liquidity(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
user_holding_lp: AccountId,
balance_lp: u128,
min_amount_a: u128,
min_amount_b: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) =
amm_program_preparation_remove_liq(balance_lp, min_amount_a, min_amount_b);
let amm_program_id = Program::amm().id();
let user_a_acc = self
.0
.get_account_public(user_holding_a)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let user_b_acc = self
.0
.get_account_public(user_holding_b)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
pool_lp,
user_holding_a,
user_holding_b,
user_holding_lp,
];
let nonces = self
.0
.get_accounts_nonces(vec![user_holding_lp])
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let signing_key_lp = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_lp)
.ok_or(ExecutionFailureKind::KeyNotFoundError)?;
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set =
nssa::public_transaction::WitnessSet::for_message(&message, &[signing_key_lp]);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
}
fn amm_program_preparation_definition(balance_a: u128, balance_b: u128) -> (Vec<u8>, Program) {
// An instruction data of 65-bytes, indicating the initial amm reserves' balances and
// token_program_id with the following layout:
// [0x00 || array of balances (little-endian 16 bytes) || AMM_PROGRAM_ID)]
let amm_program_id = Program::amm().id();
let mut instruction = [0; 65];
instruction[1..17].copy_from_slice(&balance_a.to_le_bytes());
instruction[17..33].copy_from_slice(&balance_b.to_le_bytes());
// This can be done less verbose, but it is better to use same way, as in amm program
instruction[33..37].copy_from_slice(&amm_program_id[0].to_le_bytes());
instruction[37..41].copy_from_slice(&amm_program_id[1].to_le_bytes());
instruction[41..45].copy_from_slice(&amm_program_id[2].to_le_bytes());
instruction[45..49].copy_from_slice(&amm_program_id[3].to_le_bytes());
instruction[49..53].copy_from_slice(&amm_program_id[4].to_le_bytes());
instruction[53..57].copy_from_slice(&amm_program_id[5].to_le_bytes());
instruction[57..61].copy_from_slice(&amm_program_id[6].to_le_bytes());
instruction[61..].copy_from_slice(&amm_program_id[7].to_le_bytes());
let instruction_data = instruction.to_vec();
let program = Program::amm();
(instruction_data, program)
}
fn amm_program_preparation_swap(
amount_in: u128,
min_amount_out: u128,
token_definition_id: AccountId,
) -> (Vec<u8>, Program) {
// An instruction data byte string of length 65, indicating which token type to swap, quantity
// of tokens put into the swap (of type TOKEN_DEFINITION_ID) and min_amount_out.
// [0x01 || amount (little-endian 16 bytes) || TOKEN_DEFINITION_ID].
let mut instruction = [0; 65];
instruction[0] = 0x01;
instruction[1..17].copy_from_slice(&amount_in.to_le_bytes());
instruction[17..33].copy_from_slice(&min_amount_out.to_le_bytes());
// This can be done less verbose, but it is better to use same way, as in amm program
instruction[33..].copy_from_slice(&token_definition_id.to_bytes());
let instruction_data = instruction.to_vec();
let program = Program::amm();
(instruction_data, program)
}
fn amm_program_preparation_add_liq(
min_amount_lp: u128,
max_amount_a: u128,
max_amount_b: u128,
) -> (Vec<u8>, Program) {
// An instruction data byte string of length 49, amounts for minimum amount of liquidity from
// add (min_amount_lp), max amount added for each token (max_amount_a and max_amount_b);
// indicate [0x02 || array of of balances (little-endian 16 bytes)].
let mut instruction = [0; 49];
instruction[0] = 0x02;
instruction[1..17].copy_from_slice(&min_amount_lp.to_le_bytes());
instruction[17..33].copy_from_slice(&max_amount_a.to_le_bytes());
instruction[33..49].copy_from_slice(&max_amount_b.to_le_bytes());
let instruction_data = instruction.to_vec();
let program = Program::amm();
(instruction_data, program)
}
fn amm_program_preparation_remove_liq(
balance_lp: u128,
min_amount_a: u128,
min_amount_b: u128,
) -> (Vec<u8>, Program) {
// An instruction data byte string of length 49, amounts for minimum amount of liquidity to
// redeem (balance_lp), minimum balance of each token to remove (min_amount_a and
// min_amount_b); indicate [0x03 || array of balances (little-endian 16 bytes)].
let mut instruction = [0; 49];
instruction[0] = 0x03;
instruction[1..17].copy_from_slice(&balance_lp.to_le_bytes());
instruction[17..33].copy_from_slice(&min_amount_a.to_le_bytes());
instruction[33..49].copy_from_slice(&min_amount_b.to_le_bytes());
let instruction_data = instruction.to_vec();
let program = Program::amm();
(instruction_data, program)
}