2025-12-18 21:48:37 +03:00

354 lines
12 KiB
Rust

use std::collections::HashMap;
use borsh::{BorshDeserialize, BorshSerialize};
use nssa_core::{
MembershipProof, NullifierPublicKey, NullifierSecretKey, PrivacyPreservingCircuitInput,
PrivacyPreservingCircuitOutput, SharedSecretKey,
account::AccountWithMetadata,
program::{InstructionData, ProgramId, ProgramOutput},
};
use risc0_zkvm::{ExecutorEnv, InnerReceipt, Receipt, default_prover};
use crate::{
error::NssaError,
program::Program,
program_methods::{PRIVACY_PRESERVING_CIRCUIT_ELF, PRIVACY_PRESERVING_CIRCUIT_ID},
state::MAX_NUMBER_CHAINED_CALLS,
};
/// Proof of the privacy preserving execution circuit
#[derive(Debug, Clone, PartialEq, Eq, BorshSerialize, BorshDeserialize)]
pub struct Proof(pub(crate) Vec<u8>);
#[derive(Clone)]
pub struct ProgramWithDependencies {
pub program: Program,
// TODO: avoid having a copy of the bytecode of each dependency.
pub dependencies: HashMap<ProgramId, Program>,
}
impl ProgramWithDependencies {
pub fn new(program: Program, dependencies: HashMap<ProgramId, Program>) -> Self {
Self {
program,
dependencies,
}
}
}
impl From<Program> for ProgramWithDependencies {
fn from(program: Program) -> Self {
ProgramWithDependencies::new(program, HashMap::new())
}
}
/// Generates a proof of the execution of a NSSA program inside the privacy preserving execution
/// circuit
#[expect(clippy::too_many_arguments, reason = "TODO: fix later")]
pub fn execute_and_prove(
pre_states: &[AccountWithMetadata],
instruction_data: &InstructionData,
visibility_mask: &[u8],
private_account_nonces: &[u128],
private_account_keys: &[(NullifierPublicKey, SharedSecretKey)],
private_account_nsks: &[NullifierSecretKey],
private_account_membership_proofs: &[Option<MembershipProof>],
program_with_dependencies: &ProgramWithDependencies,
) -> Result<(PrivacyPreservingCircuitOutput, Proof), NssaError> {
let mut program = &program_with_dependencies.program;
let dependencies = &program_with_dependencies.dependencies;
let mut instruction_data = instruction_data.clone();
let mut pre_states = pre_states.to_vec();
let mut env_builder = ExecutorEnv::builder();
let mut program_outputs = Vec::new();
for _i in 0..MAX_NUMBER_CHAINED_CALLS {
let inner_receipt = execute_and_prove_program(program, &pre_states, &instruction_data)?;
let program_output: ProgramOutput = inner_receipt
.journal
.decode()
.map_err(|e| NssaError::ProgramOutputDeserializationError(e.to_string()))?;
// TODO: remove clone
program_outputs.push(program_output.clone());
// Prove circuit.
env_builder.add_assumption(inner_receipt);
// TODO: Remove when multi-chain calls are supported in the circuit
assert!(program_output.chained_calls.len() <= 1);
// TODO: Modify when multi-chain calls are supported in the circuit
if let Some(next_call) = program_output.chained_calls.first() {
program = dependencies
.get(&next_call.program_id)
.ok_or(NssaError::InvalidProgramBehavior)?;
instruction_data = next_call.instruction_data.clone();
// Build post states with metadata for next call
let mut post_states_with_metadata = Vec::new();
for (pre, post) in program_output
.pre_states
.iter()
.zip(program_output.post_states)
{
let mut post_with_metadata = pre.clone();
post_with_metadata.account = post.account().clone();
post_states_with_metadata.push(post_with_metadata);
}
pre_states = next_call.pre_states.clone();
} else {
break;
}
}
let circuit_input = PrivacyPreservingCircuitInput {
program_outputs,
visibility_mask: visibility_mask.to_vec(),
private_account_nonces: private_account_nonces.to_vec(),
private_account_keys: private_account_keys.to_vec(),
private_account_nsks: private_account_nsks.to_vec(),
private_account_membership_proofs: private_account_membership_proofs.to_vec(),
program_id: program_with_dependencies.program.id(),
};
env_builder.write(&circuit_input).unwrap();
let env = env_builder.build().unwrap();
let prover = default_prover();
let prove_info = prover
.prove(env, PRIVACY_PRESERVING_CIRCUIT_ELF)
.map_err(|e| NssaError::CircuitProvingError(e.to_string()))?;
let proof = Proof(borsh::to_vec(&prove_info.receipt.inner)?);
let circuit_output: PrivacyPreservingCircuitOutput = prove_info
.receipt
.journal
.decode()
.map_err(|e| NssaError::CircuitOutputDeserializationError(e.to_string()))?;
Ok((circuit_output, proof))
}
fn execute_and_prove_program(
program: &Program,
pre_states: &[AccountWithMetadata],
instruction_data: &InstructionData,
) -> Result<Receipt, NssaError> {
// Write inputs to the program
let mut env_builder = ExecutorEnv::builder();
Program::write_inputs(pre_states, instruction_data, &mut env_builder)?;
let env = env_builder.build().unwrap();
// Prove the program
let prover = default_prover();
Ok(prover
.prove(env, program.elf())
.map_err(|e| NssaError::ProgramProveFailed(e.to_string()))?
.receipt)
}
impl Proof {
pub(crate) fn is_valid_for(&self, circuit_output: &PrivacyPreservingCircuitOutput) -> bool {
let inner: InnerReceipt = borsh::from_slice(&self.0).unwrap();
let receipt = Receipt::new(inner, circuit_output.to_bytes());
receipt.verify(PRIVACY_PRESERVING_CIRCUIT_ID).is_ok()
}
}
#[cfg(test)]
mod tests {
use nssa_core::{
Commitment, DUMMY_COMMITMENT_HASH, EncryptionScheme, Nullifier,
account::{Account, AccountId, AccountWithMetadata, data::Data},
};
use super::*;
use crate::{
privacy_preserving_transaction::circuit::execute_and_prove,
program::Program,
state::{
CommitmentSet,
tests::{test_private_account_keys_1, test_private_account_keys_2},
},
};
#[test]
fn prove_privacy_preserving_execution_circuit_public_and_private_pre_accounts() {
let recipient_keys = test_private_account_keys_1();
let program = Program::authenticated_transfer_program();
let sender = AccountWithMetadata::new(
Account {
program_owner: program.id(),
balance: 100,
..Account::default()
},
true,
AccountId::new([0; 32]),
);
let recipient = AccountWithMetadata::new(
Account::default(),
false,
AccountId::from(&recipient_keys.npk()),
);
let balance_to_move: u128 = 37;
let expected_sender_post = Account {
program_owner: program.id(),
balance: 100 - balance_to_move,
nonce: 0,
data: Data::default(),
};
let expected_recipient_post = Account {
program_owner: program.id(),
balance: balance_to_move,
nonce: 0xdeadbeef,
data: Data::default(),
};
let expected_sender_pre = sender.clone();
let esk = [3; 32];
let shared_secret = SharedSecretKey::new(&esk, &recipient_keys.ivk());
let (output, proof) = execute_and_prove(
&[sender, recipient],
&Program::serialize_instruction(balance_to_move).unwrap(),
&[0, 2],
&[0xdeadbeef],
&[(recipient_keys.npk(), shared_secret.clone())],
&[],
&[None],
&Program::authenticated_transfer_program().into(),
)
.unwrap();
assert!(proof.is_valid_for(&output));
let [sender_pre] = output.public_pre_states.try_into().unwrap();
let [sender_post] = output.public_post_states.try_into().unwrap();
assert_eq!(sender_pre, expected_sender_pre);
assert_eq!(sender_post, expected_sender_post);
assert_eq!(output.new_commitments.len(), 1);
assert_eq!(output.new_nullifiers.len(), 1);
assert_eq!(output.ciphertexts.len(), 1);
let recipient_post = EncryptionScheme::decrypt(
&output.ciphertexts[0],
&shared_secret,
&output.new_commitments[0],
0,
)
.unwrap();
assert_eq!(recipient_post, expected_recipient_post);
}
#[test]
fn prove_privacy_preserving_execution_circuit_fully_private() {
let program = Program::authenticated_transfer_program();
let sender_keys = test_private_account_keys_1();
let recipient_keys = test_private_account_keys_2();
let sender_pre = AccountWithMetadata::new(
Account {
balance: 100,
nonce: 0xdeadbeef,
program_owner: program.id(),
data: Data::default(),
},
true,
AccountId::from(&sender_keys.npk()),
);
let commitment_sender = Commitment::new(&sender_keys.npk(), &sender_pre.account);
let recipient = AccountWithMetadata::new(
Account::default(),
false,
AccountId::from(&recipient_keys.npk()),
);
let balance_to_move: u128 = 37;
let mut commitment_set = CommitmentSet::with_capacity(2);
commitment_set.extend(std::slice::from_ref(&commitment_sender));
let expected_new_nullifiers = vec![
(
Nullifier::for_account_update(&commitment_sender, &sender_keys.nsk),
commitment_set.digest(),
),
(
Nullifier::for_account_initialization(&recipient_keys.npk()),
DUMMY_COMMITMENT_HASH,
),
];
let program = Program::authenticated_transfer_program();
let expected_private_account_1 = Account {
program_owner: program.id(),
balance: 100 - balance_to_move,
nonce: 0xdeadbeef1,
..Default::default()
};
let expected_private_account_2 = Account {
program_owner: program.id(),
balance: balance_to_move,
nonce: 0xdeadbeef2,
..Default::default()
};
let expected_new_commitments = vec![
Commitment::new(&sender_keys.npk(), &expected_private_account_1),
Commitment::new(&recipient_keys.npk(), &expected_private_account_2),
];
let esk_1 = [3; 32];
let shared_secret_1 = SharedSecretKey::new(&esk_1, &sender_keys.ivk());
let esk_2 = [5; 32];
let shared_secret_2 = SharedSecretKey::new(&esk_2, &recipient_keys.ivk());
let (output, proof) = execute_and_prove(
&[sender_pre.clone(), recipient],
&Program::serialize_instruction(balance_to_move).unwrap(),
&[1, 2],
&[0xdeadbeef1, 0xdeadbeef2],
&[
(sender_keys.npk(), shared_secret_1.clone()),
(recipient_keys.npk(), shared_secret_2.clone()),
],
&[sender_keys.nsk],
&[commitment_set.get_proof_for(&commitment_sender), None],
&program.into(),
)
.unwrap();
assert!(proof.is_valid_for(&output));
assert!(output.public_pre_states.is_empty());
assert!(output.public_post_states.is_empty());
assert_eq!(output.new_commitments, expected_new_commitments);
assert_eq!(output.new_nullifiers, expected_new_nullifiers);
assert_eq!(output.ciphertexts.len(), 2);
let sender_post = EncryptionScheme::decrypt(
&output.ciphertexts[0],
&shared_secret_1,
&expected_new_commitments[0],
0,
)
.unwrap();
assert_eq!(sender_post, expected_private_account_1);
let recipient_post = EncryptionScheme::decrypt(
&output.ciphertexts[1],
&shared_secret_2,
&expected_new_commitments[1],
1,
)
.unwrap();
assert_eq!(recipient_post, expected_private_account_2);
}
}