2025-12-18 11:44:38 +02:00

473 lines
17 KiB
Rust

use common::{error::ExecutionFailureKind, rpc_primitives::requests::SendTxResponse};
use nssa::{AccountId, program::Program};
use crate::{
WalletCore,
cli::account::TokenHolding,
program_facades::{
OrphanHack49BytesInput, OrphanHack65BytesInput, compute_liquidity_token_pda,
compute_pool_pda, compute_vault_pda,
},
};
pub struct AMM<'w>(pub &'w WalletCore);
impl AMM<'_> {
pub async fn send_new_amm_definition(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
user_holding_lp: AccountId,
balance_a: u128,
balance_b: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) = amm_program_preparation_definition(balance_a, balance_b);
let amm_program_id = Program::amm().id();
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
pool_lp,
user_holding_a,
user_holding_b,
user_holding_lp,
];
let Ok(nonces) = self
.0
.get_accounts_nonces(vec![user_holding_a, user_holding_b])
.await
else {
return Err(ExecutionFailureKind::SequencerError);
};
let Some(signing_key_a) = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_a)
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let Some(signing_key_b) = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_b)
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set = nssa::public_transaction::WitnessSet::for_message(
&message,
&[signing_key_a, signing_key_b],
);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
pub async fn send_swap(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
amount_in: u128,
min_amount_out: u128,
token_definition_id: AccountId,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) =
amm_program_preparation_swap(amount_in, min_amount_out, token_definition_id);
let amm_program_id = Program::amm().id();
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
user_holding_a,
user_holding_b,
];
let account_id_auth;
// Checking, which account are associated with TokenDefinition
let token_holder_acc_a = self
.0
.get_account_public(user_holding_a)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let token_holder_acc_b = self
.0
.get_account_public(user_holding_b)
.await
.map_err(|_| ExecutionFailureKind::SequencerError)?;
let token_holder_a = TokenHolding::parse(&token_holder_acc_a.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?;
let token_holder_b = TokenHolding::parse(&token_holder_acc_b.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_b))?;
if token_holder_a.definition_id == token_definition_id {
account_id_auth = user_holding_a;
} else if token_holder_b.definition_id == token_definition_id {
account_id_auth = user_holding_b;
} else {
return Err(ExecutionFailureKind::AccountDataError(token_definition_id));
}
let Ok(nonces) = self.0.get_accounts_nonces(vec![account_id_auth]).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let Some(signing_key) = self
.0
.storage
.user_data
.get_pub_account_signing_key(&account_id_auth)
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set =
nssa::public_transaction::WitnessSet::for_message(&message, &[signing_key]);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
pub async fn send_add_liq(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
user_holding_lp: AccountId,
min_amount_lp: u128,
max_amount_a: u128,
max_amount_b: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) =
amm_program_preparation_add_liq(min_amount_lp, max_amount_a, max_amount_b);
let amm_program_id = Program::amm().id();
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
pool_lp,
user_holding_a,
user_holding_b,
user_holding_lp,
];
let Ok(nonces) = self
.0
.get_accounts_nonces(vec![user_holding_a, user_holding_b])
.await
else {
return Err(ExecutionFailureKind::SequencerError);
};
let Some(signing_key_a) = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_a)
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let Some(signing_key_b) = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_b)
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set = nssa::public_transaction::WitnessSet::for_message(
&message,
&[signing_key_a, signing_key_b],
);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
pub async fn send_remove_liq(
&self,
user_holding_a: AccountId,
user_holding_b: AccountId,
user_holding_lp: AccountId,
balance_lp: u128,
max_amount_a: u128,
max_amount_b: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let (instruction, program) =
amm_program_preparation_remove_liq(balance_lp, max_amount_a, max_amount_b);
let amm_program_id = Program::amm().id();
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
.definition_id;
let amm_pool =
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
let account_ids = vec![
amm_pool,
vault_holding_a,
vault_holding_b,
pool_lp,
user_holding_a,
user_holding_b,
user_holding_lp,
];
let Ok(nonces) = self.0.get_accounts_nonces(vec![user_holding_lp]).await else {
return Err(ExecutionFailureKind::SequencerError);
};
let Some(signing_key_lp) = self
.0
.storage
.user_data
.get_pub_account_signing_key(&user_holding_lp)
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let message = nssa::public_transaction::Message::try_new(
program.id(),
account_ids,
nonces,
instruction,
)
.unwrap();
let witness_set =
nssa::public_transaction::WitnessSet::for_message(&message, &[signing_key_lp]);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
}
}
fn amm_program_preparation_definition(
balance_a: u128,
balance_b: u128,
) -> (OrphanHack65BytesInput, Program) {
// An instruction data of 65-bytes, indicating the initial amm reserves' balances and
// token_program_id with the following layout:
// [0x00 || array of balances (little-endian 16 bytes) || AMM_PROGRAM_ID)]
let amm_program_id = Program::amm().id();
let mut instruction = [0; 65];
instruction[1..17].copy_from_slice(&balance_a.to_le_bytes());
instruction[17..33].copy_from_slice(&balance_b.to_le_bytes());
// This can be done less verbose, but it is better to use same way, as in amm program
instruction[33..37].copy_from_slice(&amm_program_id[0].to_le_bytes());
instruction[37..41].copy_from_slice(&amm_program_id[1].to_le_bytes());
instruction[41..45].copy_from_slice(&amm_program_id[2].to_le_bytes());
instruction[45..49].copy_from_slice(&amm_program_id[3].to_le_bytes());
instruction[49..53].copy_from_slice(&amm_program_id[4].to_le_bytes());
instruction[53..57].copy_from_slice(&amm_program_id[5].to_le_bytes());
instruction[57..61].copy_from_slice(&amm_program_id[6].to_le_bytes());
instruction[61..].copy_from_slice(&amm_program_id[7].to_le_bytes());
let instruction_data = OrphanHack65BytesInput::expand(instruction);
let program = Program::amm();
(instruction_data, program)
}
fn amm_program_preparation_swap(
amount_in: u128,
min_amount_out: u128,
token_definition_id: AccountId,
) -> (OrphanHack65BytesInput, Program) {
// An instruction data byte string of length 65, indicating which token type to swap, quantity
// of tokens put into the swap (of type TOKEN_DEFINITION_ID) and min_amount_out.
// [0x01 || amount (little-endian 16 bytes) || TOKEN_DEFINITION_ID].
let mut instruction = [0; 65];
instruction[0] = 0x01;
instruction[1..17].copy_from_slice(&amount_in.to_le_bytes());
instruction[17..33].copy_from_slice(&min_amount_out.to_le_bytes());
// This can be done less verbose, but it is better to use same way, as in amm program
instruction[33..].copy_from_slice(&token_definition_id.to_bytes());
let instruction_data = OrphanHack65BytesInput::expand(instruction);
let program = Program::amm();
(instruction_data, program)
}
fn amm_program_preparation_add_liq(
min_amount_lp: u128,
max_amount_a: u128,
max_amount_b: u128,
) -> (OrphanHack49BytesInput, Program) {
// An instruction data byte string of length 49, amounts for minimum amount of liquidity from
// add (min_amount_lp), max amount added for each token (max_amount_a and max_amount_b);
// indicate [0x02 || array of of balances (little-endian 16 bytes)].
let mut instruction = [0; 49];
instruction[0] = 0x02;
instruction[1..17].copy_from_slice(&min_amount_lp.to_le_bytes());
instruction[17..33].copy_from_slice(&max_amount_a.to_le_bytes());
instruction[33..49].copy_from_slice(&max_amount_b.to_le_bytes());
let instruction_data = OrphanHack49BytesInput::expand(instruction);
let program = Program::amm();
(instruction_data, program)
}
fn amm_program_preparation_remove_liq(
balance_lp: u128,
max_amount_a: u128,
max_amount_b: u128,
) -> (OrphanHack49BytesInput, Program) {
// An instruction data byte string of length 49, amounts for minimum amount of liquidity to
// redeem (balance_lp), minimum balance of each token to remove (min_amount_a and
// min_amount_b); indicate [0x03 || array of balances (little-endian 16 bytes)].
let mut instruction = [0; 49];
instruction[0] = 0x03;
instruction[1..17].copy_from_slice(&balance_lp.to_le_bytes());
instruction[17..33].copy_from_slice(&max_amount_a.to_le_bytes());
instruction[33..49].copy_from_slice(&max_amount_b.to_le_bytes());
let instruction_data = OrphanHack49BytesInput::expand(instruction);
let program = Program::amm();
(instruction_data, program)
}
#[cfg(test)]
mod tests {
use crate::program_facades::amm::OrphanHack65BytesInput;
#[test]
fn test_correct_ser() {
let mut arr = [0u8; 65];
for (i, item) in arr.iter_mut().enumerate().take(64) {
*item = i as u8;
}
let hack = OrphanHack65BytesInput::expand(arr);
let instruction_data = serde_json::to_string(&hack).unwrap();
println!("{instruction_data:?}");
// assert_eq!(serialization_res_1, serialization_res_2);
}
}