mirror of
https://github.com/logos-blockchain/lssa.git
synced 2026-02-19 04:43:36 +00:00
473 lines
17 KiB
Rust
473 lines
17 KiB
Rust
use common::{error::ExecutionFailureKind, rpc_primitives::requests::SendTxResponse};
|
|
use nssa::{AccountId, program::Program};
|
|
|
|
use crate::{
|
|
WalletCore,
|
|
cli::account::TokenHolding,
|
|
program_facades::{
|
|
OrphanHack49BytesInput, OrphanHack65BytesInput, compute_liquidity_token_pda,
|
|
compute_pool_pda, compute_vault_pda,
|
|
},
|
|
};
|
|
|
|
pub struct AMM<'w>(pub &'w WalletCore);
|
|
|
|
impl AMM<'_> {
|
|
pub async fn send_new_amm_definition(
|
|
&self,
|
|
user_holding_a: AccountId,
|
|
user_holding_b: AccountId,
|
|
user_holding_lp: AccountId,
|
|
balance_a: u128,
|
|
balance_b: u128,
|
|
) -> Result<SendTxResponse, ExecutionFailureKind> {
|
|
let (instruction, program) = amm_program_preparation_definition(balance_a, balance_b);
|
|
|
|
let amm_program_id = Program::amm().id();
|
|
|
|
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
|
|
let amm_pool =
|
|
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
|
|
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
|
|
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
|
|
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
|
|
|
|
let account_ids = vec![
|
|
amm_pool,
|
|
vault_holding_a,
|
|
vault_holding_b,
|
|
pool_lp,
|
|
user_holding_a,
|
|
user_holding_b,
|
|
user_holding_lp,
|
|
];
|
|
|
|
let Ok(nonces) = self
|
|
.0
|
|
.get_accounts_nonces(vec![user_holding_a, user_holding_b])
|
|
.await
|
|
else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let Some(signing_key_a) = self
|
|
.0
|
|
.storage
|
|
.user_data
|
|
.get_pub_account_signing_key(&user_holding_a)
|
|
else {
|
|
return Err(ExecutionFailureKind::KeyNotFoundError);
|
|
};
|
|
|
|
let Some(signing_key_b) = self
|
|
.0
|
|
.storage
|
|
.user_data
|
|
.get_pub_account_signing_key(&user_holding_b)
|
|
else {
|
|
return Err(ExecutionFailureKind::KeyNotFoundError);
|
|
};
|
|
|
|
let message = nssa::public_transaction::Message::try_new(
|
|
program.id(),
|
|
account_ids,
|
|
nonces,
|
|
instruction,
|
|
)
|
|
.unwrap();
|
|
|
|
let witness_set = nssa::public_transaction::WitnessSet::for_message(
|
|
&message,
|
|
&[signing_key_a, signing_key_b],
|
|
);
|
|
|
|
let tx = nssa::PublicTransaction::new(message, witness_set);
|
|
|
|
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
|
|
}
|
|
|
|
pub async fn send_swap(
|
|
&self,
|
|
user_holding_a: AccountId,
|
|
user_holding_b: AccountId,
|
|
amount_in: u128,
|
|
min_amount_out: u128,
|
|
token_definition_id: AccountId,
|
|
) -> Result<SendTxResponse, ExecutionFailureKind> {
|
|
let (instruction, program) =
|
|
amm_program_preparation_swap(amount_in, min_amount_out, token_definition_id);
|
|
|
|
let amm_program_id = Program::amm().id();
|
|
|
|
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
|
|
let amm_pool =
|
|
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
|
|
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
|
|
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
|
|
|
|
let account_ids = vec![
|
|
amm_pool,
|
|
vault_holding_a,
|
|
vault_holding_b,
|
|
user_holding_a,
|
|
user_holding_b,
|
|
];
|
|
|
|
let account_id_auth;
|
|
|
|
// Checking, which account are associated with TokenDefinition
|
|
let token_holder_acc_a = self
|
|
.0
|
|
.get_account_public(user_holding_a)
|
|
.await
|
|
.map_err(|_| ExecutionFailureKind::SequencerError)?;
|
|
let token_holder_acc_b = self
|
|
.0
|
|
.get_account_public(user_holding_b)
|
|
.await
|
|
.map_err(|_| ExecutionFailureKind::SequencerError)?;
|
|
|
|
let token_holder_a = TokenHolding::parse(&token_holder_acc_a.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?;
|
|
let token_holder_b = TokenHolding::parse(&token_holder_acc_b.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_b))?;
|
|
|
|
if token_holder_a.definition_id == token_definition_id {
|
|
account_id_auth = user_holding_a;
|
|
} else if token_holder_b.definition_id == token_definition_id {
|
|
account_id_auth = user_holding_b;
|
|
} else {
|
|
return Err(ExecutionFailureKind::AccountDataError(token_definition_id));
|
|
}
|
|
|
|
let Ok(nonces) = self.0.get_accounts_nonces(vec![account_id_auth]).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let Some(signing_key) = self
|
|
.0
|
|
.storage
|
|
.user_data
|
|
.get_pub_account_signing_key(&account_id_auth)
|
|
else {
|
|
return Err(ExecutionFailureKind::KeyNotFoundError);
|
|
};
|
|
|
|
let message = nssa::public_transaction::Message::try_new(
|
|
program.id(),
|
|
account_ids,
|
|
nonces,
|
|
instruction,
|
|
)
|
|
.unwrap();
|
|
|
|
let witness_set =
|
|
nssa::public_transaction::WitnessSet::for_message(&message, &[signing_key]);
|
|
|
|
let tx = nssa::PublicTransaction::new(message, witness_set);
|
|
|
|
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
|
|
}
|
|
|
|
pub async fn send_add_liq(
|
|
&self,
|
|
user_holding_a: AccountId,
|
|
user_holding_b: AccountId,
|
|
user_holding_lp: AccountId,
|
|
min_amount_lp: u128,
|
|
max_amount_a: u128,
|
|
max_amount_b: u128,
|
|
) -> Result<SendTxResponse, ExecutionFailureKind> {
|
|
let (instruction, program) =
|
|
amm_program_preparation_add_liq(min_amount_lp, max_amount_a, max_amount_b);
|
|
|
|
let amm_program_id = Program::amm().id();
|
|
|
|
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
|
|
let amm_pool =
|
|
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
|
|
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
|
|
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
|
|
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
|
|
|
|
let account_ids = vec![
|
|
amm_pool,
|
|
vault_holding_a,
|
|
vault_holding_b,
|
|
pool_lp,
|
|
user_holding_a,
|
|
user_holding_b,
|
|
user_holding_lp,
|
|
];
|
|
|
|
let Ok(nonces) = self
|
|
.0
|
|
.get_accounts_nonces(vec![user_holding_a, user_holding_b])
|
|
.await
|
|
else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let Some(signing_key_a) = self
|
|
.0
|
|
.storage
|
|
.user_data
|
|
.get_pub_account_signing_key(&user_holding_a)
|
|
else {
|
|
return Err(ExecutionFailureKind::KeyNotFoundError);
|
|
};
|
|
|
|
let Some(signing_key_b) = self
|
|
.0
|
|
.storage
|
|
.user_data
|
|
.get_pub_account_signing_key(&user_holding_b)
|
|
else {
|
|
return Err(ExecutionFailureKind::KeyNotFoundError);
|
|
};
|
|
|
|
let message = nssa::public_transaction::Message::try_new(
|
|
program.id(),
|
|
account_ids,
|
|
nonces,
|
|
instruction,
|
|
)
|
|
.unwrap();
|
|
|
|
let witness_set = nssa::public_transaction::WitnessSet::for_message(
|
|
&message,
|
|
&[signing_key_a, signing_key_b],
|
|
);
|
|
|
|
let tx = nssa::PublicTransaction::new(message, witness_set);
|
|
|
|
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
|
|
}
|
|
|
|
pub async fn send_remove_liq(
|
|
&self,
|
|
user_holding_a: AccountId,
|
|
user_holding_b: AccountId,
|
|
user_holding_lp: AccountId,
|
|
balance_lp: u128,
|
|
max_amount_a: u128,
|
|
max_amount_b: u128,
|
|
) -> Result<SendTxResponse, ExecutionFailureKind> {
|
|
let (instruction, program) =
|
|
amm_program_preparation_remove_liq(balance_lp, max_amount_a, max_amount_b);
|
|
|
|
let amm_program_id = Program::amm().id();
|
|
|
|
let Ok(user_a_acc) = self.0.get_account_public(user_holding_a).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
let Ok(user_b_acc) = self.0.get_account_public(user_holding_b).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let definition_token_a_id = TokenHolding::parse(&user_a_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
let definition_token_b_id = TokenHolding::parse(&user_b_acc.data)
|
|
.ok_or(ExecutionFailureKind::AccountDataError(user_holding_a))?
|
|
.definition_id;
|
|
|
|
let amm_pool =
|
|
compute_pool_pda(amm_program_id, definition_token_a_id, definition_token_b_id);
|
|
let vault_holding_a = compute_vault_pda(amm_program_id, amm_pool, definition_token_a_id);
|
|
let vault_holding_b = compute_vault_pda(amm_program_id, amm_pool, definition_token_b_id);
|
|
let pool_lp = compute_liquidity_token_pda(amm_program_id, amm_pool);
|
|
|
|
let account_ids = vec![
|
|
amm_pool,
|
|
vault_holding_a,
|
|
vault_holding_b,
|
|
pool_lp,
|
|
user_holding_a,
|
|
user_holding_b,
|
|
user_holding_lp,
|
|
];
|
|
|
|
let Ok(nonces) = self.0.get_accounts_nonces(vec![user_holding_lp]).await else {
|
|
return Err(ExecutionFailureKind::SequencerError);
|
|
};
|
|
|
|
let Some(signing_key_lp) = self
|
|
.0
|
|
.storage
|
|
.user_data
|
|
.get_pub_account_signing_key(&user_holding_lp)
|
|
else {
|
|
return Err(ExecutionFailureKind::KeyNotFoundError);
|
|
};
|
|
|
|
let message = nssa::public_transaction::Message::try_new(
|
|
program.id(),
|
|
account_ids,
|
|
nonces,
|
|
instruction,
|
|
)
|
|
.unwrap();
|
|
|
|
let witness_set =
|
|
nssa::public_transaction::WitnessSet::for_message(&message, &[signing_key_lp]);
|
|
|
|
let tx = nssa::PublicTransaction::new(message, witness_set);
|
|
|
|
Ok(self.0.sequencer_client.send_tx_public(tx).await?)
|
|
}
|
|
}
|
|
|
|
fn amm_program_preparation_definition(
|
|
balance_a: u128,
|
|
balance_b: u128,
|
|
) -> (OrphanHack65BytesInput, Program) {
|
|
// An instruction data of 65-bytes, indicating the initial amm reserves' balances and
|
|
// token_program_id with the following layout:
|
|
// [0x00 || array of balances (little-endian 16 bytes) || AMM_PROGRAM_ID)]
|
|
let amm_program_id = Program::amm().id();
|
|
|
|
let mut instruction = [0; 65];
|
|
instruction[1..17].copy_from_slice(&balance_a.to_le_bytes());
|
|
instruction[17..33].copy_from_slice(&balance_b.to_le_bytes());
|
|
|
|
// This can be done less verbose, but it is better to use same way, as in amm program
|
|
instruction[33..37].copy_from_slice(&amm_program_id[0].to_le_bytes());
|
|
instruction[37..41].copy_from_slice(&amm_program_id[1].to_le_bytes());
|
|
instruction[41..45].copy_from_slice(&amm_program_id[2].to_le_bytes());
|
|
instruction[45..49].copy_from_slice(&amm_program_id[3].to_le_bytes());
|
|
instruction[49..53].copy_from_slice(&amm_program_id[4].to_le_bytes());
|
|
instruction[53..57].copy_from_slice(&amm_program_id[5].to_le_bytes());
|
|
instruction[57..61].copy_from_slice(&amm_program_id[6].to_le_bytes());
|
|
instruction[61..].copy_from_slice(&amm_program_id[7].to_le_bytes());
|
|
|
|
let instruction_data = OrphanHack65BytesInput::expand(instruction);
|
|
let program = Program::amm();
|
|
|
|
(instruction_data, program)
|
|
}
|
|
|
|
fn amm_program_preparation_swap(
|
|
amount_in: u128,
|
|
min_amount_out: u128,
|
|
token_definition_id: AccountId,
|
|
) -> (OrphanHack65BytesInput, Program) {
|
|
// An instruction data byte string of length 65, indicating which token type to swap, quantity
|
|
// of tokens put into the swap (of type TOKEN_DEFINITION_ID) and min_amount_out.
|
|
// [0x01 || amount (little-endian 16 bytes) || TOKEN_DEFINITION_ID].
|
|
let mut instruction = [0; 65];
|
|
instruction[0] = 0x01;
|
|
instruction[1..17].copy_from_slice(&amount_in.to_le_bytes());
|
|
instruction[17..33].copy_from_slice(&min_amount_out.to_le_bytes());
|
|
|
|
// This can be done less verbose, but it is better to use same way, as in amm program
|
|
instruction[33..].copy_from_slice(&token_definition_id.to_bytes());
|
|
|
|
let instruction_data = OrphanHack65BytesInput::expand(instruction);
|
|
let program = Program::amm();
|
|
|
|
(instruction_data, program)
|
|
}
|
|
|
|
fn amm_program_preparation_add_liq(
|
|
min_amount_lp: u128,
|
|
max_amount_a: u128,
|
|
max_amount_b: u128,
|
|
) -> (OrphanHack49BytesInput, Program) {
|
|
// An instruction data byte string of length 49, amounts for minimum amount of liquidity from
|
|
// add (min_amount_lp), max amount added for each token (max_amount_a and max_amount_b);
|
|
// indicate [0x02 || array of of balances (little-endian 16 bytes)].
|
|
let mut instruction = [0; 49];
|
|
instruction[0] = 0x02;
|
|
|
|
instruction[1..17].copy_from_slice(&min_amount_lp.to_le_bytes());
|
|
instruction[17..33].copy_from_slice(&max_amount_a.to_le_bytes());
|
|
instruction[33..49].copy_from_slice(&max_amount_b.to_le_bytes());
|
|
|
|
let instruction_data = OrphanHack49BytesInput::expand(instruction);
|
|
let program = Program::amm();
|
|
|
|
(instruction_data, program)
|
|
}
|
|
|
|
fn amm_program_preparation_remove_liq(
|
|
balance_lp: u128,
|
|
max_amount_a: u128,
|
|
max_amount_b: u128,
|
|
) -> (OrphanHack49BytesInput, Program) {
|
|
// An instruction data byte string of length 49, amounts for minimum amount of liquidity to
|
|
// redeem (balance_lp), minimum balance of each token to remove (min_amount_a and
|
|
// min_amount_b); indicate [0x03 || array of balances (little-endian 16 bytes)].
|
|
let mut instruction = [0; 49];
|
|
instruction[0] = 0x03;
|
|
|
|
instruction[1..17].copy_from_slice(&balance_lp.to_le_bytes());
|
|
instruction[17..33].copy_from_slice(&max_amount_a.to_le_bytes());
|
|
instruction[33..49].copy_from_slice(&max_amount_b.to_le_bytes());
|
|
|
|
let instruction_data = OrphanHack49BytesInput::expand(instruction);
|
|
let program = Program::amm();
|
|
|
|
(instruction_data, program)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::program_facades::amm::OrphanHack65BytesInput;
|
|
|
|
#[test]
|
|
fn test_correct_ser() {
|
|
let mut arr = [0u8; 65];
|
|
|
|
for (i, item) in arr.iter_mut().enumerate().take(64) {
|
|
*item = i as u8;
|
|
}
|
|
|
|
let hack = OrphanHack65BytesInput::expand(arr);
|
|
let instruction_data = serde_json::to_string(&hack).unwrap();
|
|
|
|
println!("{instruction_data:?}");
|
|
|
|
// assert_eq!(serialization_res_1, serialization_res_2);
|
|
}
|
|
}
|