mirror of
https://github.com/logos-blockchain/lssa.git
synced 2026-01-02 21:33:09 +00:00
Merge pull request #20 from vacp2p/key_management_tests
Key management tests
This commit is contained in:
commit
32aa20e629
@ -62,8 +62,9 @@ impl AddressKeyHolder {
|
||||
nonce: Nonce,
|
||||
) -> Vec<u8> {
|
||||
let key_point = self.calculate_shared_secret_receiver(ephemeral_public_key_sender);
|
||||
let key_raw = key_point.to_bytes();
|
||||
let key_raw_adjust: [u8; 32] = key_raw.as_slice().try_into().unwrap();
|
||||
let binding = key_point.to_bytes();
|
||||
let key_raw = &binding.as_slice()[..32];
|
||||
let key_raw_adjust: [u8; 32] = key_raw.try_into().unwrap();
|
||||
|
||||
let key: Key<Aes256Gcm> = key_raw_adjust.into();
|
||||
|
||||
@ -75,11 +76,231 @@ impl AddressKeyHolder {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use aes_gcm::{
|
||||
aead::{Aead, KeyInit, OsRng},
|
||||
Aes256Gcm,
|
||||
};
|
||||
use constants_types::{CipherText, Nonce};
|
||||
use constants_types::{NULLIFIER_SECRET_CONST, VIEVING_SECRET_CONST};
|
||||
use elliptic_curve::ff::Field;
|
||||
use elliptic_curve::group::prime::PrimeCurveAffine;
|
||||
use elliptic_curve::group::GroupEncoding;
|
||||
use k256::{AffinePoint, ProjectivePoint, Scalar};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_new_os_random() {
|
||||
// Ensure that a new AddressKeyHolder instance can be created without errors.
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Check that key holder fields are initialized with expected types
|
||||
assert!(!Into::<bool>::into(
|
||||
address_key_holder.nullifer_public_key.is_identity()
|
||||
));
|
||||
assert!(!Into::<bool>::into(
|
||||
address_key_holder.viewing_public_key.is_identity()
|
||||
));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_calculate_shared_secret_receiver() {
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Generate a random ephemeral public key sender
|
||||
let scalar = Scalar::random(&mut OsRng);
|
||||
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
|
||||
|
||||
// Calculate shared secret
|
||||
let shared_secret =
|
||||
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
|
||||
|
||||
// Ensure the shared secret is not an identity point (suggesting non-zero output)
|
||||
assert!(!Into::<bool>::into(shared_secret.is_identity()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_decrypt_data() {
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Generate an ephemeral key and shared secret
|
||||
let scalar = Scalar::random(OsRng);
|
||||
let ephemeral_public_key_sender = address_key_holder
|
||||
.produce_ephemeral_key_holder()
|
||||
.generate_ephemeral_public_key();
|
||||
let shared_secret =
|
||||
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
|
||||
|
||||
// Prepare the encryption key from shared secret
|
||||
let key_raw = shared_secret.to_bytes();
|
||||
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
|
||||
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
|
||||
let key: Key<Aes256Gcm> = key_raw_adjust.into();
|
||||
|
||||
let cipher = Aes256Gcm::new(&key);
|
||||
|
||||
// Encrypt sample data
|
||||
let nonce = Nonce::from_slice(b"unique nonce");
|
||||
let plaintext = b"Sensitive data";
|
||||
let ciphertext = cipher
|
||||
.encrypt(nonce, plaintext.as_ref())
|
||||
.expect("encryption failure");
|
||||
|
||||
// Attempt decryption
|
||||
let decrypted_data: Vec<u8> = address_key_holder.decrypt_data(
|
||||
ephemeral_public_key_sender,
|
||||
CipherText::from(ciphertext),
|
||||
nonce.clone(),
|
||||
);
|
||||
|
||||
// Verify decryption is successful and matches original plaintext
|
||||
assert_eq!(decrypted_data, plaintext);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_os_random_initialization() {
|
||||
// Ensure that AddressKeyHolder is initialized correctly
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Check that key holder fields are initialized with expected types and values
|
||||
assert!(!Into::<bool>::into(
|
||||
address_key_holder.nullifer_public_key.is_identity()
|
||||
));
|
||||
assert!(!Into::<bool>::into(
|
||||
address_key_holder.viewing_public_key.is_identity()
|
||||
));
|
||||
assert!(address_key_holder.address.as_slice().len() > 0); // Assume TreeHashType has non-zero length for a valid address
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_calculate_shared_secret_with_identity_point() {
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Use identity point as ephemeral public key
|
||||
let identity_point = AffinePoint::identity();
|
||||
|
||||
// Calculate shared secret
|
||||
let shared_secret = address_key_holder.calculate_shared_secret_receiver(identity_point);
|
||||
|
||||
// The shared secret with the identity point should also result in the identity point
|
||||
assert!(Into::<bool>::into(shared_secret.is_identity()));
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_decrypt_data_with_incorrect_nonce() {
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Generate ephemeral public key and shared secret
|
||||
let scalar = Scalar::random(OsRng);
|
||||
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
|
||||
let shared_secret =
|
||||
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
|
||||
|
||||
// Prepare the encryption key from shared secret
|
||||
let key_raw = shared_secret.to_bytes();
|
||||
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
|
||||
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
|
||||
let key: Key<Aes256Gcm> = key_raw_adjust.into();
|
||||
|
||||
let cipher = Aes256Gcm::new(&key);
|
||||
|
||||
// Encrypt sample data with a specific nonce
|
||||
let nonce = Nonce::from_slice(b"unique nonce");
|
||||
let plaintext = b"Sensitive data";
|
||||
let ciphertext = cipher
|
||||
.encrypt(nonce, plaintext.as_ref())
|
||||
.expect("encryption failure");
|
||||
|
||||
// Attempt decryption with an incorrect nonce
|
||||
let incorrect_nonce = Nonce::from_slice(b"wrong nonce");
|
||||
let decrypted_data = address_key_holder.decrypt_data(
|
||||
ephemeral_public_key_sender,
|
||||
CipherText::from(ciphertext.clone()),
|
||||
incorrect_nonce.clone(),
|
||||
);
|
||||
|
||||
// The decryption should fail or produce incorrect output due to nonce mismatch
|
||||
assert_ne!(decrypted_data, plaintext);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_decrypt_data_with_incorrect_ciphertext() {
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Generate ephemeral public key and shared secret
|
||||
let scalar = Scalar::random(OsRng);
|
||||
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
|
||||
let shared_secret =
|
||||
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
|
||||
|
||||
// Prepare the encryption key from shared secret
|
||||
let key_raw = shared_secret.to_bytes();
|
||||
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
|
||||
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
|
||||
let key: Key<Aes256Gcm> = key_raw_adjust.into();
|
||||
|
||||
let cipher = Aes256Gcm::new(&key);
|
||||
|
||||
// Encrypt sample data
|
||||
let nonce = Nonce::from_slice(b"unique nonce");
|
||||
let plaintext = b"Sensitive data";
|
||||
let ciphertext = cipher
|
||||
.encrypt(nonce, plaintext.as_ref())
|
||||
.expect("encryption failure");
|
||||
|
||||
// Tamper with the ciphertext to simulate corruption
|
||||
let mut corrupted_ciphertext = ciphertext.clone();
|
||||
corrupted_ciphertext[0] ^= 1; // Flip a bit in the ciphertext
|
||||
|
||||
// Attempt decryption
|
||||
let result = address_key_holder.decrypt_data(
|
||||
ephemeral_public_key_sender,
|
||||
CipherText::from(corrupted_ciphertext),
|
||||
nonce.clone(),
|
||||
);
|
||||
|
||||
// The decryption should fail or produce incorrect output due to tampered ciphertext
|
||||
assert_ne!(result, plaintext);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_encryption_decryption_round_trip() {
|
||||
let address_key_holder = AddressKeyHolder::new_os_random();
|
||||
|
||||
// Generate ephemeral key and shared secret
|
||||
let scalar = Scalar::random(OsRng);
|
||||
let ephemeral_public_key_sender = (ProjectivePoint::generator() * scalar).to_affine();
|
||||
|
||||
// Encrypt sample data
|
||||
let plaintext = b"Round-trip test data";
|
||||
let nonce = Nonce::from_slice(b"unique nonce");
|
||||
|
||||
let shared_secret =
|
||||
address_key_holder.calculate_shared_secret_receiver(ephemeral_public_key_sender);
|
||||
// Prepare the encryption key from shared secret
|
||||
let key_raw = shared_secret.to_bytes();
|
||||
let key_raw_adjust_pre = &key_raw.as_slice()[..32];
|
||||
let key_raw_adjust: [u8; 32] = key_raw_adjust_pre.try_into().unwrap();
|
||||
let key: Key<Aes256Gcm> = key_raw_adjust.into();
|
||||
let cipher = Aes256Gcm::new(&key);
|
||||
|
||||
let ciphertext = cipher
|
||||
.encrypt(nonce, plaintext.as_ref())
|
||||
.expect("encryption failure");
|
||||
|
||||
// Decrypt the data using the `AddressKeyHolder` instance
|
||||
let decrypted_data = address_key_holder.decrypt_data(
|
||||
ephemeral_public_key_sender,
|
||||
CipherText::from(ciphertext),
|
||||
nonce.clone(),
|
||||
);
|
||||
|
||||
// Verify the decrypted data matches the original plaintext
|
||||
assert_eq!(decrypted_data, plaintext);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn key_generation_test() {
|
||||
let seed_holder = SeedHolder::new_os_random();
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user