Merge branch 'main' into Pravdyvy/token-burn-mint-wallet-update

This commit is contained in:
Pravdyvy 2025-12-15 09:52:10 +02:00
commit 1599bd41ce
47 changed files with 2630 additions and 203 deletions

View File

@ -11,7 +11,9 @@ members = [
"sequencer_core",
"common",
"nssa",
"nssa/core",
"integration_tests/proc_macro_test_attribute",
"examples/program_deployment",
]
[workspace.dependencies]

View File

@ -0,0 +1,13 @@
[package]
name = "program_deployment"
version = "0.1.0"
edition = "2024"
[dependencies]
tokio = { workspace = true, features = ["macros"] }
wallet = { path = "../../wallet" }
nssa-core = { path = "../../nssa/core" }
nssa = { path = "../../nssa" }
key_protocol = { path = "../../key_protocol/" }
clap = "4.5.53"
serde = "1.0.228"

View File

@ -0,0 +1,571 @@
# Program deployment tutorial
This guide walks you through running the sequencer, compiling example programs, deploying a Hello World program, and interacting with accounts.
You'll find:
- Programs: example NSSA programs under `methods/guest/src/bin`.
- Runners: scripts to create and submit transactions to invoke these programs publicly and privately under `src/bin`.
# 0. Install the wallet
From the projects root directory:
```bash
cargo install --path wallet --force
```
# 1. Run the sequencer
From the projects root directory, start the sequencer:
```bash
cd sequencer_runner
RUST_LOG=info cargo run $(pwd)/configs/debug
```
Keep this terminal open. Well use it only to observe the node logs.
> [!NOTE]
> If you have already ran this before you'll see a `rocksdb` directory with stored blocks. Be sure to remove that directory to follow this tutorial.
## Checking and setting up the wallet
For sanity let's check that the wallet can connect to it.
```bash
wallet check-health
```
If this is your first time, the wallet will ask for a password. This is used as seed to deterministically generate all account keys (public and private).
For this tutorial, use: `program-tutorial`
You should see `✅All looks good!` if everything went well.
# 2. Compile the example programs
In a second terminal, from the `lssa` root directory, compile the example Risc0 programs:
```bash
cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml
```
The compiled `.bin` files will appear under:
```
examples/program_deployment/methods/guest/target/riscv32im-risc0-zkvm-elf/docker/
```
For convenience, export this path:
```bash
export EXAMPLE_PROGRAMS_BUILD_DIR=$(pwd)/examples/program_deployment/methods/guest/target/riscv32im-risc0-zkvm-elf/docker
```
> [!IMPORTANT]
> **All remaining commands must be run from the `examples/program_deployment` directory.**
# 3. Hello world example
The Hello world program reads an arbitrary sequence of bytes from its instruction and appends them to the data field of the input account.
Execution succeeds only if the account is:
- Uninitialized, or
- Already owned by this program
If uninitialized, the program will claim the account and emit the updated state.
## Navigate to the example directory
All remaining commands must be run from:
```bash
cd examples/program_deployment
```
## Deploy the Program
Use the wallets built-in program deployment command:
```bash
wallet deploy-program $EXAMPLE_PROGRAMS_BUILD_DIR/hello_world.bin
```
# 4. Public execution of the Hello world example
## Create a Public Account
Generate a new public account:
```bash
wallet account new public
```
You'll see an output similar to:
```bash
Generated new account with account_id Public/BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9 at path /0
```
The relevant part is the account id `BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9`
## Check the account state
New accounts are always Uninitialized. Verify:
```bash
wallet account get --account-id Public/BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9
```
Expected output:
```
Account is Uninitialized
```
The `Public/` prefix tells the wallet to query the public state.
## Execute the Hello world program
Run the example:
```bash
cargo run --bin run_hello_world \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world.bin \
BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9
```
> [!NOTE]
> - Passing the `.bin` lets the script compute the program ID and build the transaction.
> - Because this program executes publicly, the node performs the execution.
> - The program will claim the account and write data into it.
Monitor the sequencer terminal to confirm execution.
## Inspect the updated account
After the transaction is processed, check the new state:
```bash
wallet account get --account-id Public/BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9
```
Example output:
```json
{
"balance": 0,
"program_owner_b64": "o6C6/bbjDmN9VUC51McBpPrta8lxrx2X0iHExhX0yNU=",
"data_b64": "SG9sYSBtdW5kbyE=",
"nonce": 0
}
```
The `data_b64` field contains de data in Base64.
Decode it:
```bash
echo -n SG9sYSBtdW5kbyE= | base64 -d
```
You should see `Hola mundo!`.
# 5. Understanding the code in `hello_world.rs`.
The Hello world example demonstrates the minimal structure of an NSSA program.
Its purpose is very simple: append the instruction bytes to the data field of a single account.
### What this program does in a nutshell
1. Reads the program inputs
- The list of pre-state accounts (`pre_states`)
- The instruction bytes (`instruction`)
- The raw instruction data (used again when writing outputs)
2. Checks that there is exactly one input account: this example operates on a single account, so it expects `pre_states` to contain exactly one entry.
3. Builds the post-state: It clones the input account and appends the instruction bytes to its data field.
4. Handles account claiming logic: If the account is uninitialized (i.e. not yet claimed by any program), its program_owner will equal `DEFAULT_PROGRAM_ID`. In that case, the program issues a claim request, meaning: "This program now owns this account."
5. Outputs the proposed state transition: `write_nssa_outputs` emits:
- The original instruction data
- The original pre-states
- The new post-states
## Code walkthrough
1. Reading inputs:
```rust
let (ProgramInput { pre_states, instruction: greeting }, instruction_data)
= read_nssa_inputs::<Instruction>();
```
2. Extracting the single account:
```rust
let [pre_state] = pre_states
.try_into()
.unwrap_or_else(|_| panic!("Input pre states should consist of a single account"));
```
3. Constructing the updated account post state
```rust
let mut this = pre_state.account.clone();
let mut bytes = this.data.into_inner();
bytes.extend_from_slice(&greeting);
this.data = bytes.try_into().expect("Data should fit within the allowed limits");
```
4. Instantiating the `AccountPostState` with a claiming request only if the account pre state is uninitialized:
```rust
let post_state = if post_account.program_owner == DEFAULT_PROGRAM_ID {
AccountPostState::new_claimed(post_account)
} else {
AccountPostState::new(post_account)
};
```
5. Emmiting the output
```rust
write_nssa_outputs(instruction_data, vec![pre_state], vec![post_state]);
```
# 6. Understanding the runner script `run_hello_world.rs`
The `run_hello_world.rs` example demonstrates how to construct and submit a public transaction that executes the `hello_world` program. Below is a breakdown of what the file does and how the pieces fit together.
### 1. Wallet initialization
```rust
let wallet_config = fetch_config().await.unwrap();
let wallet_core = WalletCore::start_from_config_update_chain(wallet_config)
.await
.unwrap();
```
The example loads the wallet configuration and initializes `WalletCore`.
This gives access to:
- the sequencer client,
- the wallets account storage.
### 2. Parsing inputs
```rust
let program_path = std::env::args_os().nth(1).unwrap().into_string().unwrap();
let account_id: AccountId = std::env::args_os().nth(2).unwrap().into_string().unwrap().parse().unwrap();
```
The program expects two arguments:
- Path to the guest binary
- AccountId of the public account to operate on
This is the account that the program will claim and write data into.
### 3. Loading the program bytecode
```rust
let bytecode: Vec<u8> = std::fs::read(program_path).unwrap();
let program = Program::new(bytecode).unwrap();
```
The Risc0 ELF is read from disk and wrapped in a Program object, which can be used to compute the program ID. The ID is used by the node to identify which program is invoked by the transaction.
### 4. Preparing the instruction data
```rust
let greeting: Vec<u8> = vec![72,111,108,97,32,109,117,110,100,111,33];
```
The example hardcodes the ASCII bytes for `Hola mundo!`. These bytes are passed to the program as its “instruction,” which the Hello World program simply appends to the accounts data field.
### 5. Creating the public transaction
```rust
let nonces = vec![];
let signing_keys = [];
let message = Message::try_new(program.id(), vec![account_id], nonces, greeting).unwrap();
let witness_set = WitnessSet::for_message(&message, &signing_keys);
let tx = PublicTransaction::new(message, witness_set);
```
A public transaction consists of:
- a `Message`
- a corresponding `WitnessSet`
For this simple example, no signing or nonces are required. The transaction includes only the program ID, the target account, and the instruction bytes. The Hello World program allows this because it does not explicitly require authorization. In the next example, well see how authorization requirements are enforced and how to construct a transaction that includes signatures and nonces.
### 6. Submitting the transaction
```rust
let response = wallet_core.sequencer_client.send_tx_public(tx).await.unwrap();
```
The transaction is sent to the sequencer, which processes it and updates the public state accordingly.
Once executed, youll be able to query the updated account to see the newly written "Hola mundo!" data.
# 7. Private execution of the Hello world example
This section is very similar to the previous case:
## Create a private account
Generate a new private account:
```bash
wallet account new private
```
You'll see an output similar to:
```bash
Generated new account with account_id Private/7EDHyxejuynBpmbLuiEym9HMUyCYxZDuF8X3B89ADeMr at path /0
```
The relevant part for this tutorial is the account id `7EDHyxejuynBpmbLuiEym9HMUyCYxZDuF8X3B89ADeMr`
You can check it's uninitialized with
```bash
wallet account get --account-id Private/7EDHyxejuynBpmbLuiEym9HMUyCYxZDuF8X3B89ADeMr
```
## Privately executing the Hello world program
### Execute the Hello world program
Run the example:
```bash
cargo run --bin run_hello_world_private \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world.bin \
7EDHyxejuynBpmbLuiEym9HMUyCYxZDuF8X3B89ADeMr
```
> [!NOTE]
> - This command may take a few minutes to complete. A ZK proof of the Hello world program execution and the privacy preserving circuit are being generated. Depending on the machine this can take from 30 seconds to 4 minutes.
> - We are passing the same `hello_world.bin` binary as in the previous case with public executions. This is because the program is the same, it is the privacy context of the input account that's different.
> - Because this program executes privately, the local machine runs the program and generate the proof of execution.
> - The program will claim the private account and write data into it.
### Syncing the new private account values
The `run_hello_world` script submitted a transaction and it was (hopefully) accepted by the node. On chain there is now a commitment to the new private account values, and the account data is stored encrypted. However, the local client hasnt updated its private state yet. Thats why, if you try to get the private account values now, it still reads the old values from local storage instead.
```bash
wallet account get --account-id Private/7EDHyxejuynBpmbLuiEym9HMUyCYxZDuF8X3B89ADeMr
```
This will still show `Account is Uninitialized`. To see the new values locally, you need to run the wallet sync command. Once the client syncs, the local store will reflect the updated account data.
To sync private accounts run:
```bash
wallet account sync-private
```
> [!NOTE]
> - This queries the node for transactions and goes throught the encrypted accounts. Whenever a new value is found for one of the owned private accounts, the local storage is updated.
After this completes, running
```bash
wallet account get --account-id Private/7EDHyxejuynBpmbLuiEym9HMUyCYxZDuF8X3B89ADeMr
```
should show something similar to
```json
{
"balance":0,
"program_owner_b64":"dWgtNRixwjC0C8aA0NL0Iuss3Q26Dw6ECk7bzExW4bI=",
"data_b64":"SG9sYSBtdW5kbyE=",
"nonce":236788677072686551559312843688143377080
}
```
## The `run_hello_world_private.rs` runner
This example extends the public `run_hello_world.rs` flow by constructing a privacy-preserving transaction instead of a public one.
Both runners load a guest program, prepare a transaction, and submit it. But the private version handles encrypted account data, nullifiers, ephemeral keys, and zk proofs.
Unlike the public version, `run_hello_world_private.rs` must:
- prepare the private account pre-state (nullifier keys, membership proof, encrypted values)
- derive a shared secret to encrypt the post-state
- compute the correct visibility mask (initialized vs. uninitialized private account)
- execute the guest program inside the zkVM and produce a proof
- build a PrivacyPreservingTransaction composed of:
- a Message encoding commitments + encrypted post-state
- a WitnessSet embedding the zk proof
Luckily all that complexity is hidden behind the `wallet_core.send_privacy_preserving_tx` function:
```rust
let accounts = vec![PrivacyPreservingAccount::PrivateOwned(account_id)];
// Construct and submit the privacy-preserving transaction
wallet_core
.send_privacy_preserving_tx(
accounts,
&Program::serialize_instruction(greeting).unwrap(),
&program,
)
.await
.unwrap();
```
Check the `run_hello_world_private.rs` file to see how it is used.
# 8. Account authorization mechanism
The Hello world example does not enforce any authorization on the input account. This means any user can execute it on any account, regardless of ownership.
NSSA provides a mechanism for programs to enforce proper authorization before an execution can succeed. The meaning of authorization differs between public and private accounts:
- Public accounts: authorization requires that the transaction is signed with the accounts signing key.
- Private accounts: authorization requires that the circuit verifies knowledge of the accounts nullifier secret key.
From the program development perspective it is very simple: input accounts come with a flag indicating whether they has been properly authorized. And so, the only difference between the program `hello_world.rs` and `hello_world_with_authorization.rs` is in the lines
```rust
// #### Difference with `hello_world` example here:
// Fail if the input account is not authorized
// The `is_authorized` field will be correctly populated or verified by the system if
// authorization is provided.
if !pre_state.is_authorized {
panic!("Missing required authorization");
}
// ####
```
Which just checks the `is_authorized` flag and fails if it is set to false.
# 9. Public execution of the Hello world with authorization example
The workflow to execute it publicly is very similar:
### Deploy the program
```bash
wallet deploy-program $EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_authorization.bin
```
### Create a new public account
Our previous public account is already claimed by the simple Hello world program. So we need a new one to work with this other version of the hello program
```bash
wallet account new public
```
Outupt:
```
Generated new account with account_id Public/9Ppqqf8NeCX58pnr8ZqKoHvSoYGqH79dSikZAtLxKgXE at path /1
```
### Run the program
```bash
cargo run --bin run_hello_world_with_authorization \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_authorization.bin \
9Ppqqf8NeCX58pnr8ZqKoHvSoYGqH79dSikZAtLxKgXE
```
# 10. Understanding `run_hello_world_with_authorization.rs`
From the runner script perspective, the only difference is that the signing keys are passed to the `WitnessSet` constructor for it to sign it. You can see this in the following parts of the code:
1. Loading the sigining keys from the wallet storage
```rust
// Load signing keys to provide authorization
let signing_key = wallet_core
.storage
.user_data
.get_pub_account_signing_key(&account_id)
.expect("Input account should be a self owned public account");
```
2. Fetching the current public nonce.
```rust
// Construct the public transaction
// Query the current nonce from the node
let nonces = wallet_core
.get_accounts_nonces(vec![account_id])
.await
.expect("Node should be reachable to query account data");
```
2. Instantiate the witness set using the signing keys
```rust
let signing_keys = [signing_key];
let message = Message::try_new(program.id(), vec![account_id], nonces, greeting).unwrap();
// Pass the signing key to sign the message. This will be used by the node
// to flag the pre_state as `is_authorized` when executing the program
let witness_set = WitnessSet::for_message(&message, &signing_keys);
```
## Seeing the mechanism in action
If everything went well you won't notice any difference with the first Hello world, because the runner takes care of signing the transaction to provide authorization and the program just succeeds.
Try using the `run_hello_world.rs` runner with the `hello_world_with_authorization.bin` program. This will fail because the runner will submit the transaction without the corresponding signature.
```bash
cargo run --bin run_hello_world \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_authorization.bin \
9Ppqqf8NeCX58pnr8ZqKoHvSoYGqH79dSikZAtLxKgXE
```
You should see something like the following **on the node logs**.
```bash
[2025-12-11T13:43:22Z WARN sequencer_core] Error at transition ProgramExecutionFailed(
"Guest panicked: Missing required authorization",
)
```
# 11. Public and private account interaction example
Previous examples only operated on public or private accounts independently. Those minimal programs were useful to introduce basic concepts, but they couldn't demonstrate how different types of accounts interact within a single program invocation.
The "Hello world with move function" introduces two operations that require one or two input accounts:
- `write`: appends arbitrary bytes to a single account. This is what we already had.
- `move_data`: reads all bytes from one account, clears it, and appends those bytes to another account.
Because these operations may involve multiple accounts, we'll see how public and private accounts can participate together in one execution. It highlights how ownership checks work, when an account needs to be claimed, and how multiple post-states are emitted when several accounts are modified.
> [!NOTE]
> The program logic is completely agnostic to whether input accounts are public or private. It always executes the same way.
> See `methods/guest/src/bin/hello_world_with_move_function.rs`. The program just reads the instruction bytes and updates the accounts state.
> All privacy handling happens on the runner side. When constructing the transaction, the runner decides which accounts are public or private and prepares the appropriate proofs. The program itself can't differentiate between privacy modes.
Let's start by deploying the program
```bash
wallet deploy-program $EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_move_function.bin
```
Let's also create a new public account
```bash
wallet account new public
```
Output:
```
Generated new account with account_id Public/95iNQMbmxMRY6jULiHYkCzCkYKPEuysvBh5kEHayDxLs at path /0/0
```
Let's execute the write function
```bash
cargo run --bin run_hello_world_with_move_function \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_move_function.bin \
write-public 95iNQMbmxMRY6jULiHYkCzCkYKPEuysvBh5kEHayDxLs mundo!
```
Let's crate a new private account.
```bash
wallet account new private
```
Output:
```
Generated new account with account_id Private/8vzkK7vsdrS2gdPhLk72La8X4FJkgJ5kJLUBRbEVkReU at path /1
```
Let's execute the write function
```bash
cargo run --bin run_hello_world_with_move_function \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_move_function.bin \
write-private 8vzkK7vsdrS2gdPhLk72La8X4FJkgJ5kJLUBRbEVkReU Hola
```
To check the values of the accounts are as expected run:
```bash
wallet account get --account-id Public/95iNQMbmxMRY6jULiHYkCzCkYKPEuysvBh5kEHayDxLs
```
and
```bash
wallet account sync-private
wallet account get --account-id Private/8vzkK7vsdrS2gdPhLk72La8X4FJkgJ5kJLUBRbEVkReU
```
and check the (base64 encoded) data values are `mundo!` and `Hola` respectively.
Now we can execute the move function to clear the data on the public account and move it to the private account.
```bash
cargo run --bin run_hello_world_with_move_function \
$EXAMPLE_PROGRAMS_BUILD_DIR/hello_world_with_move_function.bin \
move-data-public-to-private 95iNQMbmxMRY6jULiHYkCzCkYKPEuysvBh5kEHayDxLs 8vzkK7vsdrS2gdPhLk72La8X4FJkgJ5kJLUBRbEVkReU
```
After succeeding, re run the get and sync commands and check that the public account has empty data and the private account data is `Holamundo!`.
# 12. Program composition: tail calls
Programs can chain calls to other programs when they return. This is the tail call or chained call mechanism. It is used by programs that depend on other programs.
The examples include a `guest/src/bin/simple_tail_call.rs` program that shows how to trigger this mechanism. It internally calls the first Hello World program with a fixed greeting: `Hello from tail call`.
> [!NOTE]
> This program hardcodes the ID of the Hello World program. If something fails, check that this ID matches the one produced when building the Hello World program. You can see it in the output of `cargo risczero build` from the earlier sections of this tutorial. If it differs, update the ID in `simple_tail_call.rs` and build again.
As before, let's start by deploying the program
```bash
wallet deploy-program $EXAMPLE_PROGRAMS_BUILD_DIR/simple_tail_call.bin
```
We'll use the first public account of this tutorial. The one with account id `BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9`. This account is already owned by the Hello world program and its data reads `Hola mundo!`.
Let's run the tail call program
```bash
cargo run --bin run_hello_world_through_tail_call \
$EXAMPLE_PROGRAMS_BUILD_DIR/simple_tail_call.bin \
BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9
```
Once the transaction is processed, query the account values with:
```bash
wallet account get --account-id Public/BzdBoL4JRa5M873cuWb9rbYgASr1pXyaAZ1YW9ertWH9
```
You should se an output similar to
```json
{
"balance":0,
"program_owner_b64":"fpnW4tFY9N6llZcBHaXRwu7xe+7WZnZX9RWzhwNbk1o=",
"data_b64":"SG9sYSBtdW5kbyFIZWxsbyBmcm9tIHRhaWwgY2FsbA==",
"nonce":0
}
```
Decoding the (base64 encoded) data
```bash
echo -n SG9sYSBtdW5kbyFIZWxsbyBmcm9tIHRhaWwgY2FsbA== | base64 -d
```
Output:
```
Hola mundo!Hello from tail call
```

View File

@ -0,0 +1,10 @@
[package]
name = "test-program-methods"
version = "0.1.0"
edition = "2024"
[build-dependencies]
risc0-build = { version = "3.0.3" }
[package.metadata.risc0]
methods = ["guest"]

View File

@ -0,0 +1,3 @@
fn main() {
risc0_build::embed_methods();
}

View File

@ -0,0 +1,13 @@
[package]
name = "programs"
version = "0.1.0"
edition = "2024"
[workspace]
[dependencies]
risc0-zkvm = { version = "3.0.3", features = ['std'] }
nssa-core = { path = "../../../../nssa/core" }
serde = { version = "1.0.219", default-features = false }
hex = "0.4.3"
bytemuck = "1.24.0"

View File

@ -0,0 +1,60 @@
use nssa_core::program::{
AccountPostState, DEFAULT_PROGRAM_ID, ProgramInput, read_nssa_inputs, write_nssa_outputs,
};
// Hello-world example program.
//
// This program reads an arbitrary sequence of bytes as its instruction
// and appends those bytes to the `data` field of the single input account.
//
// Execution succeeds only if the input account is either:
// - uninitialized, or
// - already owned by this program.
//
// In case the input account is uninitialized, the program claims it.
//
// The updated account is emitted as the sole post-state.
type Instruction = Vec<u8>;
fn main() {
// Read inputs
let (
ProgramInput {
pre_states,
instruction: greeting,
},
instruction_data,
) = read_nssa_inputs::<Instruction>();
// Unpack the input account pre state
let [pre_state] = pre_states
.try_into()
.unwrap_or_else(|_| panic!("Input pre states should consist of a single account"));
// Construct the post state account values
let post_account = {
let mut this = pre_state.account.clone();
let mut bytes = this.data.into_inner();
bytes.extend_from_slice(&greeting);
this.data = bytes
.try_into()
.expect("Data should fit within the allowed limits");
this
};
// Wrap the post state account values inside a `AccountPostState` instance.
// This is used to forward the account claiming request if any
let post_state = if post_account.program_owner == DEFAULT_PROGRAM_ID {
// This produces a claim request
AccountPostState::new_claimed(post_account)
} else {
// This doesn't produce a claim request
AccountPostState::new(post_account)
};
// The output is a proposed state difference. It will only succeed if the pre states coincide
// with the previous values of the accounts, and the transition to the post states conforms
// with the NSSA program rules.
write_nssa_outputs(instruction_data, vec![pre_state], vec![post_state]);
}

View File

@ -0,0 +1,69 @@
use nssa_core::program::{
AccountPostState, DEFAULT_PROGRAM_ID, ProgramInput, read_nssa_inputs, write_nssa_outputs,
};
// Hello-world with authorization example program.
//
// This program reads an arbitrary sequence of bytes as its instruction
// and appends those bytes to the `data` field of the single input account.
//
// Execution succeeds only if the input account **is authorized** and is either:
// - uninitialized, or
// - already owned by this program.
//
// In case the input account is uninitialized, the program claims it.
//
// The updated account is emitted as the sole post-state.
type Instruction = Vec<u8>;
fn main() {
// Read inputs
let (
ProgramInput {
pre_states,
instruction: greeting,
},
instruction_data,
) = read_nssa_inputs::<Instruction>();
// Unpack the input account pre state
let [pre_state] = pre_states
.try_into()
.unwrap_or_else(|_| panic!("Input pre states should consist of a single account"));
// #### Difference with `hello_world` example here:
// Fail if the input account is not authorized
// The `is_authorized` field will be correctly populated or verified by the system if
// authorization is provided.
if !pre_state.is_authorized {
panic!("Missing required authorization");
}
// ####
// Construct the post state account values
let post_account = {
let mut this = pre_state.account.clone();
let mut bytes = this.data.into_inner();
bytes.extend_from_slice(&greeting);
this.data = bytes
.try_into()
.expect("Data should fit within the allowed limits");
this
};
// Wrap the post state account values inside a `AccountPostState` instance.
// This is used to forward the account claiming request if any
let post_state = if post_account.program_owner == DEFAULT_PROGRAM_ID {
// This produces a claim request
AccountPostState::new_claimed(post_account)
} else {
// This doesn't produce a claim request
AccountPostState::new(post_account)
};
// The output is a proposed state difference. It will only succeed if the pre states coincide
// with the previous values of the accounts, and the transition to the post states conforms
// with the NSSA program rules.
write_nssa_outputs(instruction_data, vec![pre_state], vec![post_state]);
}

View File

@ -0,0 +1,101 @@
use nssa_core::{
account::{Account, AccountWithMetadata},
program::{
AccountPostState, DEFAULT_PROGRAM_ID, ProgramInput, read_nssa_inputs, write_nssa_outputs,
},
};
// Hello-world with write + move_data example program.
//
// This program reads an instruction of the form `(function_id, data)` and
// dispatches to either:
//
// - `write`: appends `data` to the `data` field of a single input account.
// - `move_data`: moves all bytes from one account to another. The source account is cleared and the
// destination account receives the appended bytes.
//
// Execution succeeds only if:
// - the accounts involved are either uninitialized, or
// - already owned by this program.
//
// In case an input account is uninitialized, the program will claim it when
// producing the post-state.
type Instruction = (u8, Vec<u8>);
const WRITE_FUNCTION_ID: u8 = 0;
const MOVE_DATA_FUNCTION_ID: u8 = 1;
fn build_post_state(post_account: Account) -> AccountPostState {
if post_account.program_owner == DEFAULT_PROGRAM_ID {
// This produces a claim request
AccountPostState::new_claimed(post_account)
} else {
// This doesn't produce a claim request
AccountPostState::new(post_account)
}
}
fn write(pre_state: AccountWithMetadata, greeting: Vec<u8>) -> AccountPostState {
// Construct the post state account values
let post_account = {
let mut this = pre_state.account.clone();
let mut bytes = this.data.into_inner();
bytes.extend_from_slice(&greeting);
this.data = bytes
.try_into()
.expect("Data should fit within the allowed limits");
this
};
build_post_state(post_account)
}
fn move_data(
from_pre: &AccountWithMetadata,
to_pre: &AccountWithMetadata,
) -> Vec<AccountPostState> {
// Construct the post state account values
let from_data: Vec<u8> = from_pre.account.data.clone().into();
let from_post = {
let mut this = from_pre.account.clone();
this.data = Default::default();
build_post_state(this)
};
let to_post = {
let mut this = to_pre.account.clone();
let mut bytes = this.data.into_inner();
bytes.extend_from_slice(&from_data);
this.data = bytes
.try_into()
.expect("Data should fit within the allowed limits");
build_post_state(this)
};
vec![from_post, to_post]
}
fn main() {
// Read input accounts.
let (
ProgramInput {
pre_states,
instruction: (function_id, data),
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let post_states = match (pre_states.as_slice(), function_id, data.len()) {
([account_pre], WRITE_FUNCTION_ID, _) => {
let post = write(account_pre.clone(), data);
vec![post]
}
([account_from_pre, account_to_pre], MOVE_DATA_FUNCTION_ID, 0) => {
move_data(account_from_pre, account_to_pre)
}
_ => panic!("invalid params"),
};
write_nssa_outputs(instruction_words, pre_states, post_states);
}

View File

@ -0,0 +1,64 @@
use nssa_core::program::{
AccountPostState, ChainedCall, ProgramId, ProgramInput, read_nssa_inputs,
write_nssa_outputs_with_chained_call,
};
// Tail Call example program.
//
// This program shows how to chain execution to another program using `ChainedCall`.
// It reads a single account, emits it unchanged, and then triggers a tail call
// to the Hello World program with a fixed greeting.
/// This needs to be set to the ID of the Hello world program.
/// To get the ID run **from the root directoy of the repository**:
/// `cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml`
/// This compiles the programs and outputs the IDs in hex that can be used to copy here.
const HELLO_WORLD_PROGRAM_ID_HEX: &str =
"7e99d6e2d158f4dea59597011da5d1c2eef17beed6667657f515b387035b935a";
fn hello_world_program_id() -> ProgramId {
let hello_world_program_id_bytes: [u8; 32] = hex::decode(HELLO_WORLD_PROGRAM_ID_HEX)
.unwrap()
.try_into()
.unwrap();
bytemuck::cast(hello_world_program_id_bytes)
}
fn main() {
// Read inputs
let (
ProgramInput {
pre_states,
instruction: _,
},
instruction_data,
) = read_nssa_inputs::<()>();
// Unpack the input account pre state
let [pre_state] = pre_states
.clone()
.try_into()
.unwrap_or_else(|_| panic!("Input pre states should consist of a single account"));
// Create the (unchanged) post state
let post_state = AccountPostState::new(pre_state.account.clone());
// Create the chained call
let chained_call_greeting: Vec<u8> = b"Hello from tail call".to_vec();
let chained_call_instruction_data = risc0_zkvm::serde::to_vec(&chained_call_greeting).unwrap();
let chained_call = ChainedCall {
program_id: hello_world_program_id(),
instruction_data: chained_call_instruction_data,
pre_states,
pda_seeds: vec![],
};
// Write the outputs
write_nssa_outputs_with_chained_call(
instruction_data,
vec![pre_state],
vec![post_state],
vec![chained_call],
);
}

View File

@ -0,0 +1 @@
include!(concat!(env!("OUT_DIR"), "/methods.rs"));

View File

@ -0,0 +1,67 @@
use nssa::{
AccountId, PublicTransaction,
program::Program,
public_transaction::{Message, WitnessSet},
};
use wallet::{WalletCore, helperfunctions::fetch_config};
// Before running this example, compile the `hello_world.rs` guest program with:
//
// cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml
//
// Note: you must run the above command from the root of the `lssa` repository.
// Note: The compiled binary file is stored in
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world.bin
//
//
// Usage:
// cargo run --bin run_hello_world /path/to/guest/binary <account_id>
//
// Example:
// cargo run --bin run_hello_world \
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world.bin \
// Ds8q5PjLcKwwV97Zi7duhRVF9uwA2PuYMoLL7FwCzsXE
#[tokio::main]
async fn main() {
// Load wallet config and storage
let wallet_config = fetch_config().await.unwrap();
let wallet_core = WalletCore::start_from_config_update_chain(wallet_config)
.await
.unwrap();
// Parse arguments
// First argument is the path to the program binary
let program_path = std::env::args_os().nth(1).unwrap().into_string().unwrap();
// Second argument is the account_id
let account_id: AccountId = std::env::args_os()
.nth(2)
.unwrap()
.into_string()
.unwrap()
.parse()
.unwrap();
// Load the program
let bytecode: Vec<u8> = std::fs::read(program_path).unwrap();
let program = Program::new(bytecode).unwrap();
// Define the desired greeting in ASCII
let greeting: Vec<u8> = vec![72, 111, 108, 97, 32, 109, 117, 110, 100, 111, 33];
// Construct the public transaction
// No nonces nor signing keys are needed for this example. Check out the
// `run_hello_world_with_authorization` on how to use them.
let nonces = vec![];
let signing_keys = [];
let message = Message::try_new(program.id(), vec![account_id], nonces, greeting).unwrap();
let witness_set = WitnessSet::for_message(&message, &signing_keys);
let tx = PublicTransaction::new(message, witness_set);
// Submit the transaction
let _response = wallet_core
.sequencer_client
.send_tx_public(tx)
.await
.unwrap();
}

View File

@ -0,0 +1,61 @@
use nssa::{AccountId, program::Program};
use wallet::{PrivacyPreservingAccount, WalletCore, helperfunctions::fetch_config};
// Before running this example, compile the `hello_world.rs` guest program with:
//
// cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml
//
// Note: you must run the above command from the root of the `lssa` repository.
// Note: The compiled binary file is stored in
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world.bin
//
//
// Usage:
// cargo run --bin run_hello_world_private /path/to/guest/binary <account_id>
//
// Note: the provided account_id needs to be of a private self owned account
//
// Example:
// cargo run --bin run_hello_world_private \
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world.bin \
// Ds8q5PjLcKwwV97Zi7duhRVF9uwA2PuYMoLL7FwCzsXE
#[tokio::main]
async fn main() {
// Load wallet config and storage
let wallet_config = fetch_config().await.unwrap();
let wallet_core = WalletCore::start_from_config_update_chain(wallet_config)
.await
.unwrap();
// Parse arguments
// First argument is the path to the program binary
let program_path = std::env::args_os().nth(1).unwrap().into_string().unwrap();
// Second argument is the account_id
let account_id: AccountId = std::env::args_os()
.nth(2)
.unwrap()
.into_string()
.unwrap()
.parse()
.unwrap();
// Load the program
let bytecode: Vec<u8> = std::fs::read(program_path).unwrap();
let program = Program::new(bytecode).unwrap();
// Define the desired greeting in ASCII
let greeting: Vec<u8> = vec![72, 111, 108, 97, 32, 109, 117, 110, 100, 111, 33];
let accounts = vec![PrivacyPreservingAccount::PrivateOwned(account_id)];
// Construct and submit the privacy-preserving transaction
wallet_core
.send_privacy_preserving_tx(
accounts,
&Program::serialize_instruction(greeting).unwrap(),
&program,
)
.await
.unwrap();
}

View File

@ -0,0 +1,63 @@
use nssa::{
AccountId, PublicTransaction,
program::Program,
public_transaction::{Message, WitnessSet},
};
use wallet::{WalletCore, helperfunctions::fetch_config};
// Before running this example, compile the `simple_tail_call.rs` guest program with:
//
// cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml
//
// Note: you must run the above command from the root of the `lssa` repository.
// Note: The compiled binary file is stored in
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/simple_tail_call.bin
//
//
// Usage:
// cargo run --bin run_hello_world_through_tail_call /path/to/guest/binary <account_id>
//
// Example:
// cargo run --bin run_hello_world_through_tail_call \
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/simple_tail_call.bin \
// Ds8q5PjLcKwwV97Zi7duhRVF9uwA2PuYMoLL7FwCzsXE
#[tokio::main]
async fn main() {
// Load wallet config and storage
let wallet_config = fetch_config().await.unwrap();
let wallet_core = WalletCore::start_from_config_update_chain(wallet_config)
.await
.unwrap();
// Parse arguments
// First argument is the path to the program binary
let program_path = std::env::args_os().nth(1).unwrap().into_string().unwrap();
// Second argument is the account_id
let account_id: AccountId = std::env::args_os()
.nth(2)
.unwrap()
.into_string()
.unwrap()
.parse()
.unwrap();
// Load the program
let bytecode: Vec<u8> = std::fs::read(program_path).unwrap();
let program = Program::new(bytecode).unwrap();
let instruction_data = ();
let nonces = vec![];
let signing_keys = [];
let message =
Message::try_new(program.id(), vec![account_id], nonces, instruction_data).unwrap();
let witness_set = WitnessSet::for_message(&message, &signing_keys);
let tx = PublicTransaction::new(message, witness_set);
// Submit the transaction
let _response = wallet_core
.sequencer_client
.send_tx_public(tx)
.await
.unwrap();
}

View File

@ -0,0 +1,80 @@
use nssa::{
AccountId, PublicTransaction,
program::Program,
public_transaction::{Message, WitnessSet},
};
use wallet::{WalletCore, helperfunctions::fetch_config};
// Before running this example, compile the `hello_world_with_authorization.rs` guest program with:
//
// cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml
//
// Note: you must run the above command from the root of the `lssa` repository.
// Note: The compiled binary file is stored in
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world_with_authorization.bin
//
//
// Usage:
// ./run_hello_world_with_authorization /path/to/guest/binary <account_id>
//
// Note: the provided account_id needs to be of a public self owned account
//
// Example:
// cargo run --bin run_hello_world_with_authorization \
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world_with_authorization.bin \
// Ds8q5PjLcKwwV97Zi7duhRVF9uwA2PuYMoLL7FwCzsXE
#[tokio::main]
async fn main() {
// Load wallet config and storage
let wallet_config = fetch_config().await.unwrap();
let wallet_core = WalletCore::start_from_config_update_chain(wallet_config)
.await
.unwrap();
// Parse arguments
// First argument is the path to the program binary
let program_path = std::env::args_os().nth(1).unwrap().into_string().unwrap();
// Second argument is the account_id
let account_id: AccountId = std::env::args_os()
.nth(2)
.unwrap()
.into_string()
.unwrap()
.parse()
.unwrap();
// Load the program
let bytecode: Vec<u8> = std::fs::read(program_path).unwrap();
let program = Program::new(bytecode).unwrap();
// Load signing keys to provide authorization
let signing_key = wallet_core
.storage
.user_data
.get_pub_account_signing_key(&account_id)
.expect("Input account should be a self owned public account");
// Define the desired greeting in ASCII
let greeting: Vec<u8> = vec![72, 111, 108, 97, 32, 109, 117, 110, 100, 111, 33];
// Construct the public transaction
// Query the current nonce from the node
let nonces = wallet_core
.get_accounts_nonces(vec![account_id])
.await
.expect("Node should be reachable to query account data");
let signing_keys = [signing_key];
let message = Message::try_new(program.id(), vec![account_id], nonces, greeting).unwrap();
// Pass the signing key to sign the message. This will be used by the node
// to flag the pre_state as `is_authorized` when executing the program
let witness_set = WitnessSet::for_message(&message, &signing_keys);
let tx = PublicTransaction::new(message, witness_set);
// Submit the transaction
let _response = wallet_core
.sequencer_client
.send_tx_public(tx)
.await
.unwrap();
}

View File

@ -0,0 +1,155 @@
use clap::{Parser, Subcommand};
use nssa::{PublicTransaction, program::Program, public_transaction};
use wallet::{PrivacyPreservingAccount, WalletCore, helperfunctions::fetch_config};
// Before running this example, compile the `hello_world_with_move_function.rs` guest program with:
//
// cargo risczero build --manifest-path examples/program_deployment/methods/guest/Cargo.toml
//
// Note: you must run the above command from the root of the `lssa` repository.
// Note: The compiled binary file is stored in
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world_with_move_function.bin
//
//
// Usage:
// cargo run --bin run_hello_world_with_move_function /path/to/guest/binary <function> <params>
//
// Example:
// cargo run --bin run_hello_world_with_move_function \
// methods/guest/target/riscv32im-risc0-zkvm-elf/docker/hello_world_with_move_function.bin \
// write-public Ds8q5PjLcKwwV97Zi7duhRVF9uwA2PuYMoLL7FwCzsXE Hola
type Instruction = (u8, Vec<u8>);
const WRITE_FUNCTION_ID: u8 = 0;
const MOVE_DATA_FUNCTION_ID: u8 = 1;
#[derive(Parser, Debug)]
struct Cli {
/// Path to program binary
program_path: String,
#[command(subcommand)]
command: Command,
}
#[derive(Subcommand, Debug)]
enum Command {
/// Write instruction into one account
WritePublic {
account_id: String,
greeting: String,
},
WritePrivate {
account_id: String,
greeting: String,
},
/// Move data between two accounts
MoveDataPublicToPublic {
from: String,
to: String,
},
MoveDataPublicToPrivate {
from: String,
to: String,
},
}
#[tokio::main]
async fn main() {
let cli = Cli::parse();
// Load the program
let bytecode: Vec<u8> = std::fs::read(cli.program_path).unwrap();
let program = Program::new(bytecode).unwrap();
// Load wallet config and storage
let wallet_config = fetch_config().await.unwrap();
let wallet_core = WalletCore::start_from_config_update_chain(wallet_config)
.await
.unwrap();
match cli.command {
Command::WritePublic {
account_id,
greeting,
} => {
let instruction: Instruction = (WRITE_FUNCTION_ID, greeting.into_bytes());
let account_id = account_id.parse().unwrap();
let nonces = vec![];
let message = public_transaction::Message::try_new(
program.id(),
vec![account_id],
nonces,
instruction,
)
.unwrap();
let witness_set = public_transaction::WitnessSet::for_message(&message, &[]);
let tx = PublicTransaction::new(message, witness_set);
// Submit the transaction
let _response = wallet_core
.sequencer_client
.send_tx_public(tx)
.await
.unwrap();
}
Command::WritePrivate {
account_id,
greeting,
} => {
let instruction: Instruction = (WRITE_FUNCTION_ID, greeting.into_bytes());
let account_id = account_id.parse().unwrap();
let accounts = vec![PrivacyPreservingAccount::PrivateOwned(account_id)];
wallet_core
.send_privacy_preserving_tx(
accounts,
&Program::serialize_instruction(instruction).unwrap(),
&program,
)
.await
.unwrap();
}
Command::MoveDataPublicToPublic { from, to } => {
let instruction: Instruction = (MOVE_DATA_FUNCTION_ID, vec![]);
let from = from.parse().unwrap();
let to = to.parse().unwrap();
let nonces = vec![];
let message = public_transaction::Message::try_new(
program.id(),
vec![from, to],
nonces,
instruction,
)
.unwrap();
let witness_set = public_transaction::WitnessSet::for_message(&message, &[]);
let tx = PublicTransaction::new(message, witness_set);
// Submit the transaction
let _response = wallet_core
.sequencer_client
.send_tx_public(tx)
.await
.unwrap();
}
Command::MoveDataPublicToPrivate { from, to } => {
let instruction: Instruction = (MOVE_DATA_FUNCTION_ID, vec![]);
let from = from.parse().unwrap();
let to = to.parse().unwrap();
let accounts = vec![
PrivacyPreservingAccount::Public(from),
PrivacyPreservingAccount::PrivateOwned(to),
];
wallet_core
.send_privacy_preserving_tx(
accounts,
&Program::serialize_instruction(instruction).unwrap(),
&program,
)
.await
.unwrap();
}
};
}

View File

@ -542,5 +542,6 @@
}
}
}
]
],
"basic_auth": null
}

Binary file not shown.

View File

@ -168,7 +168,7 @@ fn build_privacy_transaction() -> PrivacyPreservingTransaction {
(recipient_npk.clone(), recipient_ss),
],
&[(sender_nsk, proof)],
&program,
&program.into(),
)
.unwrap();
let message = pptx::message::Message::try_from_circuit_output(

View File

@ -25,8 +25,8 @@ pub struct Account {
pub nonce: Nonce,
}
#[derive(Serialize, Deserialize, Clone)]
#[cfg_attr(any(feature = "host", test), derive(Debug, PartialEq, Eq))]
#[derive(Serialize, Deserialize, Clone, PartialEq, Eq)]
#[cfg_attr(any(feature = "host", test), derive(Debug))]
pub struct AccountWithMetadata {
pub account: Account,
pub is_authorized: bool,

View File

@ -10,7 +10,7 @@ use crate::{
#[derive(Serialize, Deserialize)]
pub struct PrivacyPreservingCircuitInput {
pub program_output: ProgramOutput,
pub program_outputs: Vec<ProgramOutput>,
pub visibility_mask: Vec<u8>,
pub private_account_nonces: Vec<Nonce>,
pub private_account_keys: Vec<(NullifierPublicKey, SharedSecretKey)>,

View File

@ -1,3 +1,5 @@
use std::collections::HashSet;
use risc0_zkvm::{DeserializeOwned, guest::env, serde::Deserializer};
use serde::{Deserialize, Serialize};
@ -8,6 +10,7 @@ use crate::account::{Account, AccountWithMetadata};
pub type ProgramId = [u32; 8];
pub type InstructionData = Vec<u32>;
pub const DEFAULT_PROGRAM_ID: ProgramId = [0; 8];
pub const MAX_NUMBER_CHAINED_CALLS: usize = 10;
pub struct ProgramInput<T> {
pub pre_states: Vec<AccountWithMetadata>,
@ -54,7 +57,9 @@ impl From<(&ProgramId, &PdaSeed)> for AccountId {
#[derive(Serialize, Deserialize, Clone)]
#[cfg_attr(any(feature = "host", test), derive(Debug, PartialEq, Eq))]
pub struct ChainedCall {
/// The program ID of the program to execute
pub program_id: ProgramId,
/// The instruction data to pass
pub instruction_data: InstructionData,
pub pre_states: Vec<AccountWithMetadata>,
pub pda_seeds: Vec<PdaSeed>,
@ -111,26 +116,34 @@ impl AccountPostState {
#[derive(Serialize, Deserialize, Clone)]
#[cfg_attr(any(feature = "host", test), derive(Debug, PartialEq, Eq))]
pub struct ProgramOutput {
/// The instruction data the program received to produce this output
pub instruction_data: InstructionData,
/// The account pre states the program received to produce this output
pub pre_states: Vec<AccountWithMetadata>,
pub post_states: Vec<AccountPostState>,
pub chained_calls: Vec<ChainedCall>,
}
pub fn read_nssa_inputs<T: DeserializeOwned>() -> ProgramInput<T> {
pub fn read_nssa_inputs<T: DeserializeOwned>() -> (ProgramInput<T>, InstructionData) {
let pre_states: Vec<AccountWithMetadata> = env::read();
let instruction_words: InstructionData = env::read();
let instruction = T::deserialize(&mut Deserializer::new(instruction_words.as_ref())).unwrap();
ProgramInput {
pre_states,
instruction,
}
(
ProgramInput {
pre_states,
instruction,
},
instruction_words,
)
}
pub fn write_nssa_outputs(
instruction_data: InstructionData,
pre_states: Vec<AccountWithMetadata>,
post_states: Vec<AccountPostState>,
) {
let output = ProgramOutput {
instruction_data,
pre_states,
post_states,
chained_calls: Vec::new(),
@ -139,11 +152,13 @@ pub fn write_nssa_outputs(
}
pub fn write_nssa_outputs_with_chained_call(
instruction_data: InstructionData,
pre_states: Vec<AccountWithMetadata>,
post_states: Vec<AccountPostState>,
chained_calls: Vec<ChainedCall>,
) {
let output = ProgramOutput {
instruction_data,
pre_states,
post_states,
chained_calls,
@ -162,32 +177,37 @@ pub fn validate_execution(
post_states: &[AccountPostState],
executing_program_id: ProgramId,
) -> bool {
// 1. Lengths must match
// 1. Check account ids are all different
if !validate_uniqueness_of_account_ids(pre_states) {
return false;
}
// 2. Lengths must match
if pre_states.len() != post_states.len() {
return false;
}
for (pre, post) in pre_states.iter().zip(post_states) {
// 2. Nonce must remain unchanged
// 3. Nonce must remain unchanged
if pre.account.nonce != post.account.nonce {
return false;
}
// 3. Program ownership changes are not allowed
// 4. Program ownership changes are not allowed
if pre.account.program_owner != post.account.program_owner {
return false;
}
let account_program_owner = pre.account.program_owner;
// 4. Decreasing balance only allowed if owned by executing program
// 5. Decreasing balance only allowed if owned by executing program
if post.account.balance < pre.account.balance
&& account_program_owner != executing_program_id
{
return false;
}
// 5. Data changes only allowed if owned by executing program or if account pre state has
// 6. Data changes only allowed if owned by executing program or if account pre state has
// default values
if pre.account.data != post.account.data
&& pre.account != Account::default()
@ -196,14 +216,14 @@ pub fn validate_execution(
return false;
}
// 6. If a post state has default program owner, the pre state must have been a default
// 7. If a post state has default program owner, the pre state must have been a default
// account
if post.account.program_owner == DEFAULT_PROGRAM_ID && pre.account != Account::default() {
return false;
}
}
// 7. Total balance is preserved
// 8. Total balance is preserved
let Some(total_balance_pre_states) =
WrappedBalanceSum::from_balances(pre_states.iter().map(|pre| pre.account.balance))
@ -224,6 +244,17 @@ pub fn validate_execution(
true
}
fn validate_uniqueness_of_account_ids(pre_states: &[AccountWithMetadata]) -> bool {
let number_of_accounts = pre_states.len();
let number_of_account_ids = pre_states
.iter()
.map(|account| &account.account_id)
.collect::<HashSet<_>>()
.len();
number_of_accounts == number_of_account_ids
}
/// Representation of a number as `lo + hi * 2^128`.
#[derive(PartialEq, Eq)]
struct WrappedBalanceSum {

View File

@ -6,34 +6,37 @@ use nssa_core::{
};
/// Initializes a default account under the ownership of this program.
fn initialize_account(pre_state: AccountWithMetadata) {
fn initialize_account(pre_state: AccountWithMetadata) -> AccountPostState {
let account_to_claim = AccountPostState::new_claimed(pre_state.account.clone());
let is_authorized = pre_state.is_authorized;
// Continue only if the account to claim has default values
if account_to_claim.account() != &Account::default() {
return;
panic!("Account must be uninitialized");
}
// Continue only if the owner authorized this operation
if !is_authorized {
return;
panic!("Invalid input");
}
// Noop will result in account being claimed for this program
write_nssa_outputs(vec![pre_state], vec![account_to_claim]);
account_to_claim
}
/// Transfers `balance_to_move` native balance from `sender` to `recipient`.
fn transfer(sender: AccountWithMetadata, recipient: AccountWithMetadata, balance_to_move: u128) {
fn transfer(
sender: AccountWithMetadata,
recipient: AccountWithMetadata,
balance_to_move: u128,
) -> Vec<AccountPostState> {
// Continue only if the sender has authorized this operation
if !sender.is_authorized {
return;
panic!("Invalid input");
}
// Continue only if the sender has enough balance
if sender.account.balance < balance_to_move {
return;
panic!("Invalid input");
}
// Create accounts post states, with updated balances
@ -57,23 +60,31 @@ fn transfer(sender: AccountWithMetadata, recipient: AccountWithMetadata, balance
}
};
write_nssa_outputs(vec![sender, recipient], vec![sender_post, recipient_post]);
vec![sender_post, recipient_post]
}
/// A transfer of balance program.
/// To be used both in public and private contexts.
fn main() {
// Read input accounts.
let ProgramInput {
pre_states,
instruction: balance_to_move,
} = read_nssa_inputs();
let (
ProgramInput {
pre_states,
instruction: balance_to_move,
},
instruction_words,
) = read_nssa_inputs();
match (pre_states.as_slice(), balance_to_move) {
([account_to_claim], 0) => initialize_account(account_to_claim.clone()),
let post_states = match (pre_states.as_slice(), balance_to_move) {
([account_to_claim], 0) => {
let post = initialize_account(account_to_claim.clone());
vec![post]
}
([sender, recipient], balance_to_move) => {
transfer(sender.clone(), recipient.clone(), balance_to_move)
}
_ => panic!("invalid params"),
}
};
write_nssa_outputs(instruction_words, pre_states, post_states);
}

View File

@ -44,10 +44,13 @@ impl Challenge {
fn main() {
// Read input accounts.
// It is expected to receive only two accounts: [pinata_account, winner_account]
let ProgramInput {
pre_states,
instruction: solution,
} = read_nssa_inputs::<Instruction>();
let (
ProgramInput {
pre_states,
instruction: solution,
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let [pinata, winner] = match pre_states.try_into() {
Ok(array) => array,
@ -71,6 +74,7 @@ fn main() {
winner_post.balance += PRIZE;
write_nssa_outputs(
instruction_words,
vec![pinata, winner],
vec![
AccountPostState::new(pinata_post),

View File

@ -54,10 +54,13 @@ fn main() {
// Read input accounts.
// It is expected to receive three accounts: [pinata_definition, pinata_token_holding,
// winner_token_holding]
let ProgramInput {
pre_states,
instruction: solution,
} = read_nssa_inputs::<Instruction>();
let (
ProgramInput {
pre_states,
instruction: solution,
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let [
pinata_definition,
@ -98,6 +101,7 @@ fn main() {
}];
write_nssa_outputs_with_chained_call(
instruction_words,
vec![
pinata_definition,
pinata_token_holding,

View File

@ -1,4 +1,4 @@
use std::collections::HashSet;
use std::collections::HashMap;
use nssa_core::{
Commitment, CommitmentSetDigest, DUMMY_COMMITMENT_HASH, EncryptionScheme, Nullifier,
@ -6,43 +6,114 @@ use nssa_core::{
account::{Account, AccountId, AccountWithMetadata},
compute_digest_for_path,
encryption::Ciphertext,
program::{DEFAULT_PROGRAM_ID, ProgramOutput, validate_execution},
program::{DEFAULT_PROGRAM_ID, MAX_NUMBER_CHAINED_CALLS, validate_execution},
};
use risc0_zkvm::{guest::env, serde::to_vec};
fn main() {
let PrivacyPreservingCircuitInput {
program_output,
program_outputs,
visibility_mask,
private_account_nonces,
private_account_keys,
private_account_auth,
program_id,
mut program_id,
} = env::read();
// Check that `program_output` is consistent with the execution of the corresponding program.
env::verify(program_id, &to_vec(&program_output).unwrap()).unwrap();
let mut pre_states: Vec<AccountWithMetadata> = Vec::new();
let mut state_diff: HashMap<AccountId, Account> = HashMap::new();
let ProgramOutput {
pre_states,
post_states,
chained_calls,
} = program_output;
// TODO: implement chained calls for privacy preserving transactions
if !chained_calls.is_empty() {
panic!("Privacy preserving transactions do not support yet chained calls.")
let num_calls = program_outputs.len();
if num_calls > MAX_NUMBER_CHAINED_CALLS {
panic!("Max chained calls depth is exceeded");
}
// Check that there are no repeated account ids
if !validate_uniqueness_of_account_ids(&pre_states) {
panic!("Repeated account ids found")
let Some(last_program_call) = program_outputs.last() else {
panic!("Program outputs is empty")
};
if !last_program_call.chained_calls.is_empty() {
panic!("Call stack is incomplete");
}
// Check that the program is well behaved.
// See the # Programs section for the definition of the `validate_execution` method.
if !validate_execution(&pre_states, &post_states, program_id) {
panic!("Bad behaved program");
for window in program_outputs.windows(2) {
let caller = &window[0];
let callee = &window[1];
if caller.chained_calls.len() > 1 {
panic!("Privacy Multi-chained calls are not supported yet");
}
// TODO: Modify when multi-chain calls are supported in the circuit
let Some(caller_chained_call) = &caller.chained_calls.first() else {
panic!("Expected chained call");
};
// Check that instruction data in caller is the instruction data in callee
if caller_chained_call.instruction_data != callee.instruction_data {
panic!("Invalid instruction data");
}
// Check that account pre_states in caller are the ones in calle
if caller_chained_call.pre_states != callee.pre_states {
panic!("Invalid pre states");
}
}
for (i, program_output) in program_outputs.iter().enumerate() {
let mut program_output = program_output.clone();
// Check that `program_output` is consistent with the execution of the corresponding program.
let program_output_words =
&to_vec(&program_output).expect("program_output must be serializable");
env::verify(program_id, program_output_words)
.expect("program output must match the program's execution");
// Check that the program is well behaved.
// See the # Programs section for the definition of the `validate_execution` method.
if !validate_execution(
&program_output.pre_states,
&program_output.post_states,
program_id,
) {
panic!("Bad behaved program");
}
// The invoked program claims the accounts with default program id.
for post in program_output
.post_states
.iter_mut()
.filter(|post| post.requires_claim())
{
// The invoked program can only claim accounts with default program id.
if post.account().program_owner == DEFAULT_PROGRAM_ID {
post.account_mut().program_owner = program_id;
} else {
panic!("Cannot claim an initialized account")
}
}
for (pre, post) in program_output
.pre_states
.iter()
.zip(&program_output.post_states)
{
if let Some(account_pre) = state_diff.get(&pre.account_id) {
if account_pre != &pre.account {
panic!("Invalid input");
}
} else {
pre_states.push(pre.clone());
}
state_diff.insert(pre.account_id.clone(), post.account().clone());
}
// TODO: Modify when multi-chain calls are supported in the circuit
if let Some(next_chained_call) = &program_output.chained_calls.first() {
program_id = next_chained_call.program_id;
} else if i != program_outputs.len() - 1 {
panic!("Inner call without a chained call found")
};
}
let n_accounts = pre_states.len();
@ -69,10 +140,8 @@ fn main() {
// Public account
public_pre_states.push(pre_states[i].clone());
let mut post = post_states[i].account().clone();
if pre_states[i].is_authorized {
post.nonce += 1;
}
let mut post = state_diff.get(&pre_states[i].account_id).unwrap().clone();
if post.program_owner == DEFAULT_PROGRAM_ID {
// Claim account
post.program_owner = program_id;
@ -125,7 +194,8 @@ fn main() {
}
// Update post-state with new nonce
let mut post_with_updated_values = post_states[i].account().clone();
let mut post_with_updated_values =
state_diff.get(&pre_states[i].account_id).unwrap().clone();
post_with_updated_values.nonce = *new_nonce;
if post_with_updated_values.program_owner == DEFAULT_PROGRAM_ID {
@ -174,14 +244,3 @@ fn main() {
env::commit(&output);
}
fn validate_uniqueness_of_account_ids(pre_states: &[AccountWithMetadata]) -> bool {
let number_of_accounts = pre_states.len();
let number_of_account_ids = pre_states
.iter()
.map(|account| account.account_id.clone())
.collect::<HashSet<_>>()
.len();
number_of_accounts == number_of_account_ids
}

View File

@ -1,24 +1,27 @@
use nssa_core::{
account::{Account, AccountId, AccountWithMetadata, Data, data::DATA_MAX_LENGTH_IN_BYTES},
account::{Account, AccountId, AccountWithMetadata, Data},
program::{
AccountPostState, DEFAULT_PROGRAM_ID, ProgramInput, read_nssa_inputs, write_nssa_outputs,
},
};
// The token program has three functions:
// 1. New token definition. Arguments to this function are:
// * Two **default** accounts: [definition_account, holding_account]. The first default account
// will be initialized with the token definition account values. The second account will be
// initialized to a token holding account for the new token, holding the entire total supply.
// * An instruction data of 23-bytes, indicating the total supply and the token name, with the
// following layout: [0x00 || total_supply (little-endian 16 bytes) || name (6 bytes)] The
// name cannot be equal to [0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
// 2. Token transfer Arguments to this function are:
// 1. New token definition.
// Arguments to this function are:
// * Two **default** accounts: [definition_account, holding_account].
// The first default account will be initialized with the token definition account values. The second account will
// be initialized to a token holding account for the new token, holding the entire total supply.
// * An instruction data of 23-bytes, indicating the total supply and the token name, with
// the following layout:
// [0x00 || total_supply (little-endian 16 bytes) || name (6 bytes)]
// The name cannot be equal to [0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
// 2. Token transfer
// Arguments to this function are:
// * Two accounts: [sender_account, recipient_account].
// * An instruction data byte string of length 23, indicating the total supply with the
// following layout [0x01 || amount (little-endian 16 bytes) || 0x00 || 0x00 || 0x00 || 0x00
// || 0x00 || 0x00].
// 3. Initialize account with zero balance Arguments to this function are:
// * An instruction data byte string of length 23, indicating the total supply with the following layout
// [0x01 || amount (little-endian 16 bytes) || 0x00 || 0x00 || 0x00 || 0x00 || 0x00 || 0x00].
// 3. Initialize account with zero balance
// Arguments to this function are:
// * Two accounts: [definition_account, account_to_initialize].
// * An dummy byte string of length 23, with the following layout
// [0x02 || 0x00 || 0x00 || 0x00 || ... || 0x00 || 0x00].
@ -37,11 +40,9 @@ use nssa_core::{
const TOKEN_DEFINITION_TYPE: u8 = 0;
const TOKEN_DEFINITION_DATA_SIZE: usize = 23;
const _: () = assert!(TOKEN_DEFINITION_DATA_SIZE <= DATA_MAX_LENGTH_IN_BYTES);
const TOKEN_HOLDING_TYPE: u8 = 1;
const TOKEN_HOLDING_DATA_SIZE: usize = 49;
const _: () = assert!(TOKEN_HOLDING_DATA_SIZE <= DATA_MAX_LENGTH_IN_BYTES);
struct TokenDefinition {
account_type: u8,
@ -381,10 +382,13 @@ fn mint_additional_supply(
type Instruction = [u8; 23];
fn main() {
let ProgramInput {
pre_states,
instruction,
} = read_nssa_inputs::<Instruction>();
let (
ProgramInput {
pre_states,
instruction,
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let post_states = match instruction[0] {
0 => {
@ -455,7 +459,7 @@ fn main() {
_ => panic!("Invalid instruction"),
};
write_nssa_outputs(pre_states, post_states);
write_nssa_outputs(instruction_words, pre_states, post_states);
}
#[cfg(test)]

View File

@ -17,7 +17,12 @@ pub mod public_transaction;
mod signature;
mod state;
pub use nssa_core::account::{Account, AccountId};
pub use nssa_core::{
SharedSecretKey,
account::{Account, AccountId},
encryption::EphemeralPublicKey,
program::ProgramId,
};
pub use privacy_preserving_transaction::{
PrivacyPreservingTransaction, circuit::execute_and_prove,
};

View File

@ -1,9 +1,11 @@
use std::collections::HashMap;
use borsh::{BorshDeserialize, BorshSerialize};
use nssa_core::{
MembershipProof, NullifierPublicKey, NullifierSecretKey, PrivacyPreservingCircuitInput,
PrivacyPreservingCircuitOutput, SharedSecretKey,
account::AccountWithMetadata,
program::{InstructionData, ProgramOutput},
program::{InstructionData, ProgramId, ProgramOutput},
};
use risc0_zkvm::{ExecutorEnv, InnerReceipt, Receipt, default_prover};
@ -11,12 +13,35 @@ use crate::{
error::NssaError,
program::Program,
program_methods::{PRIVACY_PRESERVING_CIRCUIT_ELF, PRIVACY_PRESERVING_CIRCUIT_ID},
state::MAX_NUMBER_CHAINED_CALLS,
};
/// Proof of the privacy preserving execution circuit
#[derive(Debug, Clone, PartialEq, Eq, BorshSerialize, BorshDeserialize)]
pub struct Proof(pub(crate) Vec<u8>);
#[derive(Clone)]
pub struct ProgramWithDependencies {
pub program: Program,
// TODO: avoid having a copy of the bytecode of each dependency.
pub dependencies: HashMap<ProgramId, Program>,
}
impl ProgramWithDependencies {
pub fn new(program: Program, dependencies: HashMap<ProgramId, Program>) -> Self {
Self {
program,
dependencies,
}
}
}
impl From<Program> for ProgramWithDependencies {
fn from(program: Program) -> Self {
ProgramWithDependencies::new(program, HashMap::new())
}
}
/// Generates a proof of the execution of a NSSA program inside the privacy preserving execution
/// circuit
pub fn execute_and_prove(
@ -26,27 +51,64 @@ pub fn execute_and_prove(
private_account_nonces: &[u128],
private_account_keys: &[(NullifierPublicKey, SharedSecretKey)],
private_account_auth: &[(NullifierSecretKey, MembershipProof)],
program: &Program,
program_with_dependencies: &ProgramWithDependencies,
) -> Result<(PrivacyPreservingCircuitOutput, Proof), NssaError> {
let inner_receipt = execute_and_prove_program(program, pre_states, instruction_data)?;
let mut program = &program_with_dependencies.program;
let dependencies = &program_with_dependencies.dependencies;
let mut instruction_data = instruction_data.clone();
let mut pre_states = pre_states.to_vec();
let mut env_builder = ExecutorEnv::builder();
let mut program_outputs = Vec::new();
let program_output: ProgramOutput = inner_receipt
.journal
.decode()
.map_err(|e| NssaError::ProgramOutputDeserializationError(e.to_string()))?;
for _i in 0..MAX_NUMBER_CHAINED_CALLS {
let inner_receipt = execute_and_prove_program(program, &pre_states, &instruction_data)?;
let program_output: ProgramOutput = inner_receipt
.journal
.decode()
.map_err(|e| NssaError::ProgramOutputDeserializationError(e.to_string()))?;
// TODO: remove clone
program_outputs.push(program_output.clone());
// Prove circuit.
env_builder.add_assumption(inner_receipt);
// TODO: Remove when multi-chain calls are supported in the circuit
assert!(program_output.chained_calls.len() <= 1);
// TODO: Modify when multi-chain calls are supported in the circuit
if let Some(next_call) = program_output.chained_calls.first() {
program = dependencies
.get(&next_call.program_id)
.ok_or(NssaError::InvalidProgramBehavior)?;
instruction_data = next_call.instruction_data.clone();
// Build post states with metadata for next call
let mut post_states_with_metadata = Vec::new();
for (pre, post) in program_output
.pre_states
.iter()
.zip(program_output.post_states)
{
let mut post_with_metadata = pre.clone();
post_with_metadata.account = post.account().clone();
post_states_with_metadata.push(post_with_metadata);
}
pre_states = next_call.pre_states.clone();
} else {
break;
}
}
let circuit_input = PrivacyPreservingCircuitInput {
program_output,
program_outputs,
visibility_mask: visibility_mask.to_vec(),
private_account_nonces: private_account_nonces.to_vec(),
private_account_keys: private_account_keys.to_vec(),
private_account_auth: private_account_auth.to_vec(),
program_id: program.id(),
program_id: program_with_dependencies.program.id(),
};
// Prove circuit.
let mut env_builder = ExecutorEnv::builder();
env_builder.add_assumption(inner_receipt);
env_builder.write(&circuit_input).unwrap();
let env = env_builder.build().unwrap();
let prover = default_prover();
@ -133,7 +195,7 @@ mod tests {
let expected_sender_post = Account {
program_owner: program.id(),
balance: 100 - balance_to_move,
nonce: 1,
nonce: 0,
data: Data::default(),
};
@ -156,7 +218,7 @@ mod tests {
&[0xdeadbeef],
&[(recipient_keys.npk(), shared_secret.clone())],
&[],
&Program::authenticated_transfer_program(),
&Program::authenticated_transfer_program().into(),
)
.unwrap();
@ -257,7 +319,7 @@ mod tests {
sender_keys.nsk,
commitment_set.get_proof_for(&commitment_sender).unwrap(),
)],
&program,
&program.into(),
)
.unwrap();

View File

@ -4,4 +4,6 @@ pub mod witness_set;
pub mod circuit;
pub use message::Message;
pub use transaction::PrivacyPreservingTransaction;
pub use witness_set::WitnessSet;

View File

@ -14,7 +14,7 @@ use crate::{
/// TODO: Make this variable when fees are implemented
const MAX_NUM_CYCLES_PUBLIC_EXECUTION: u64 = 1024 * 1024 * 32; // 32M cycles
#[derive(Debug, PartialEq, Eq)]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Program {
id: ProgramId,
elf: Vec<u8>,

View File

@ -154,6 +154,12 @@ impl V02State {
*current_account = post;
}
// 5. Increment nonces for public signers
for account_id in tx.signer_account_ids() {
let current_account = self.get_account_by_id_mut(account_id);
current_account.nonce += 1;
}
Ok(())
}
@ -272,7 +278,10 @@ pub mod tests {
error::NssaError,
execute_and_prove,
privacy_preserving_transaction::{
PrivacyPreservingTransaction, circuit, message::Message, witness_set::WitnessSet,
PrivacyPreservingTransaction,
circuit::{self, ProgramWithDependencies},
message::Message,
witness_set::WitnessSet,
},
program::Program,
public_transaction,
@ -859,7 +868,7 @@ pub mod tests {
&[0xdeadbeef],
&[(recipient_keys.npk(), shared_secret)],
&[],
&Program::authenticated_transfer_program(),
&Program::authenticated_transfer_program().into(),
)
.unwrap();
@ -911,7 +920,7 @@ pub mod tests {
sender_keys.nsk,
state.get_proof_for_commitment(&sender_commitment).unwrap(),
)],
&program,
&program.into(),
)
.unwrap();
@ -963,7 +972,7 @@ pub mod tests {
sender_keys.nsk,
state.get_proof_for_commitment(&sender_commitment).unwrap(),
)],
&program,
&program.into(),
)
.unwrap();
@ -1176,7 +1185,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1202,7 +1211,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1228,7 +1237,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1254,7 +1263,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1282,7 +1291,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.to_owned().into(),
);
assert!(matches!(result, Err(NssaError::ProgramProveFailed(_))));
@ -1308,7 +1317,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1343,7 +1352,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1369,7 +1378,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1404,7 +1413,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1441,7 +1450,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1482,7 +1491,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1516,7 +1525,7 @@ pub mod tests {
&[0xdeadbeef1, 0xdeadbeef2],
&private_account_keys,
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1557,7 +1566,7 @@ pub mod tests {
),
],
&private_account_auth,
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1605,7 +1614,7 @@ pub mod tests {
&[0xdeadbeef1, 0xdeadbeef2],
&private_account_keys,
&private_account_auth,
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1651,7 +1660,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1698,7 +1707,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1744,7 +1753,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1790,7 +1799,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1834,7 +1843,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1863,7 +1872,7 @@ pub mod tests {
&[],
&[],
&[],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1905,7 +1914,7 @@ pub mod tests {
),
],
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1951,7 +1960,7 @@ pub mod tests {
&[0xdeadbeef1, 0xdeadbeef2],
&private_account_keys,
&[(sender_keys.nsk, (0, vec![]))],
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -1997,7 +2006,7 @@ pub mod tests {
),
],
&private_account_auth,
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -2088,7 +2097,7 @@ pub mod tests {
(sender_keys.npk(), shared_secret),
],
&private_account_auth,
&program,
&program.into(),
);
assert!(matches!(result, Err(NssaError::CircuitProvingError(_))));
@ -2131,7 +2140,7 @@ pub mod tests {
}
#[test]
fn test_chained_call_succeeds() {
fn test_public_chained_call() {
let program = Program::chain_caller();
let key = PrivateKey::try_new([1; 32]).unwrap();
let from = AccountId::from(&PublicKey::new_from_private_key(&key));
@ -2310,6 +2319,128 @@ pub mod tests {
assert_eq!(to_post, expected_to_post);
}
#[test]
fn test_private_chained_call() {
// Arrange
let chain_caller = Program::chain_caller();
let auth_transfers = Program::authenticated_transfer_program();
let from_keys = test_private_account_keys_1();
let to_keys = test_private_account_keys_2();
let initial_balance = 100;
let from_account = AccountWithMetadata::new(
Account {
program_owner: auth_transfers.id(),
balance: initial_balance,
..Account::default()
},
true,
&from_keys.npk(),
);
let to_account = AccountWithMetadata::new(
Account {
program_owner: auth_transfers.id(),
..Account::default()
},
true,
&to_keys.npk(),
);
let from_commitment = Commitment::new(&from_keys.npk(), &from_account.account);
let to_commitment = Commitment::new(&to_keys.npk(), &to_account.account);
let mut state = V02State::new_with_genesis_accounts(
&[],
&[from_commitment.clone(), to_commitment.clone()],
)
.with_test_programs();
let amount: u128 = 37;
let instruction: (u128, ProgramId, u32, Option<PdaSeed>) = (
amount,
Program::authenticated_transfer_program().id(),
1,
None,
);
let from_esk = [3; 32];
let from_ss = SharedSecretKey::new(&from_esk, &from_keys.ivk());
let from_epk = EphemeralPublicKey::from_scalar(from_esk);
let to_esk = [3; 32];
let to_ss = SharedSecretKey::new(&to_esk, &to_keys.ivk());
let to_epk = EphemeralPublicKey::from_scalar(to_esk);
let mut dependencies = HashMap::new();
dependencies.insert(auth_transfers.id(), auth_transfers);
let program_with_deps = ProgramWithDependencies::new(chain_caller, dependencies);
let from_new_nonce = 0xdeadbeef1;
let to_new_nonce = 0xdeadbeef2;
let from_expected_post = Account {
balance: initial_balance - amount,
nonce: from_new_nonce,
..from_account.account.clone()
};
let from_expected_commitment = Commitment::new(&from_keys.npk(), &from_expected_post);
let to_expected_post = Account {
balance: amount,
nonce: to_new_nonce,
..to_account.account.clone()
};
let to_expected_commitment = Commitment::new(&to_keys.npk(), &to_expected_post);
// Act
let (output, proof) = execute_and_prove(
&[to_account, from_account],
&Program::serialize_instruction(instruction).unwrap(),
&[1, 1],
&[from_new_nonce, to_new_nonce],
&[(from_keys.npk(), to_ss), (to_keys.npk(), from_ss)],
&[
(
from_keys.nsk,
state.get_proof_for_commitment(&from_commitment).unwrap(),
),
(
to_keys.nsk,
state.get_proof_for_commitment(&to_commitment).unwrap(),
),
],
&program_with_deps,
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![],
vec![],
vec![
(to_keys.npk(), to_keys.ivk(), to_epk),
(from_keys.npk(), from_keys.ivk(), from_epk),
],
output,
)
.unwrap();
let witness_set = WitnessSet::for_message(&message, proof, &[]);
let transaction = PrivacyPreservingTransaction::new(message, witness_set);
state
.transition_from_privacy_preserving_transaction(&transaction)
.unwrap();
// Assert
assert!(
state
.get_proof_for_commitment(&from_expected_commitment)
.is_some()
);
assert!(
state
.get_proof_for_commitment(&to_expected_commitment)
.is_some()
);
}
#[test]
fn test_pda_mechanism_with_pinata_token_program() {
let pinata_token = Program::pinata_token();

View File

@ -3,10 +3,13 @@ use nssa_core::program::{AccountPostState, ProgramInput, read_nssa_inputs, write
type Instruction = u128;
fn main() {
let ProgramInput {
pre_states,
instruction: balance_to_burn,
} = read_nssa_inputs::<Instruction>();
let (
ProgramInput {
pre_states,
instruction: balance_to_burn,
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -17,5 +20,5 @@ fn main() {
let mut account_post = account_pre.clone();
account_post.balance -= balance_to_burn;
write_nssa_outputs(vec![pre], vec![AccountPostState::new(account_post)]);
write_nssa_outputs(instruction_words, vec![pre], vec![AccountPostState::new(account_post)]);
}

View File

@ -10,10 +10,13 @@ type Instruction = (u128, ProgramId, u32, Option<PdaSeed>);
/// It permutes the order of the input accounts on the subsequent call
/// The `ProgramId` in the instruction must be the program_id of the authenticated transfers program
fn main() {
let ProgramInput {
pre_states,
let (
ProgramInput {
pre_states,
instruction: (balance, auth_transfer_id, num_chain_calls, pda_seed),
} = read_nssa_inputs::<Instruction>();
},
instruction_words
) = read_nssa_inputs::<Instruction>();
let [recipient_pre, sender_pre] = match pre_states.try_into() {
Ok(array) => array,
@ -44,6 +47,7 @@ fn main() {
}
write_nssa_outputs_with_chained_call(
instruction_words,
vec![sender_pre.clone(), recipient_pre.clone()],
vec![
AccountPostState::new(sender_pre.account),

View File

@ -3,10 +3,13 @@ use nssa_core::program::{AccountPostState, ProgramInput, read_nssa_inputs, write
type Instruction = ();
fn main() {
let ProgramInput {
pre_states,
instruction: _,
} = read_nssa_inputs::<Instruction>();
let (
ProgramInput {
pre_states,
instruction: _,
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -15,5 +18,5 @@ fn main() {
let account_post = AccountPostState::new_claimed(pre.account.clone());
write_nssa_outputs(vec![pre], vec![account_post]);
write_nssa_outputs(instruction_words, vec![pre], vec![account_post]);
}

View File

@ -4,7 +4,7 @@ type Instruction = Vec<u8>;
/// A program that modifies the account data by setting bytes sent in instruction.
fn main() {
let ProgramInput { pre_states, instruction: data } = read_nssa_inputs::<Instruction>();
let (ProgramInput { pre_states, instruction: data }, instruction_words) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -15,5 +15,9 @@ fn main() {
let mut account_post = account_pre.clone();
account_post.data = data.try_into().expect("provided data should fit into data limit");
write_nssa_outputs(vec![pre], vec![AccountPostState::new_claimed(account_post)]);
write_nssa_outputs(
instruction_words,
vec![pre],
vec![AccountPostState::new_claimed(account_post)],
);
}

View File

@ -6,7 +6,7 @@ use nssa_core::{
type Instruction = ();
fn main() {
let ProgramInput { pre_states, .. } = read_nssa_inputs::<Instruction>();
let (ProgramInput { pre_states, .. }, instruction_words) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -16,6 +16,7 @@ fn main() {
let account_pre = pre.account.clone();
write_nssa_outputs(
instruction_words,
vec![pre],
vec![
AccountPostState::new(account_pre),

View File

@ -3,7 +3,7 @@ use nssa_core::program::{read_nssa_inputs, write_nssa_outputs, AccountPostState,
type Instruction = ();
fn main() {
let ProgramInput { pre_states, .. } = read_nssa_inputs::<Instruction>();
let (ProgramInput { pre_states, .. }, instruction_words) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -14,5 +14,5 @@ fn main() {
let mut account_post = account_pre.clone();
account_post.balance += 1;
write_nssa_outputs(vec![pre], vec![AccountPostState::new(account_post)]);
write_nssa_outputs(instruction_words, vec![pre], vec![AccountPostState::new(account_post)]);
}

View File

@ -3,7 +3,7 @@ use nssa_core::program::{AccountPostState, ProgramInput, read_nssa_inputs, write
type Instruction = ();
fn main() {
let ProgramInput { pre_states, .. } = read_nssa_inputs::<Instruction>();
let (ProgramInput { pre_states, .. }, instruction_words) = read_nssa_inputs::<Instruction>();
let [pre1, pre2] = match pre_states.try_into() {
Ok(array) => array,
@ -12,5 +12,9 @@ fn main() {
let account_pre1 = pre1.account.clone();
write_nssa_outputs(vec![pre1, pre2], vec![AccountPostState::new(account_pre1)]);
write_nssa_outputs(
instruction_words,
vec![pre1, pre2],
vec![AccountPostState::new(account_pre1)],
);
}

View File

@ -5,32 +5,32 @@ use nssa_core::{
/// Initializes a default account under the ownership of this program.
/// This is achieved by a noop.
fn initialize_account(pre_state: AccountWithMetadata) {
fn initialize_account(pre_state: AccountWithMetadata) -> AccountPostState {
let account_to_claim = pre_state.account.clone();
let is_authorized = pre_state.is_authorized;
// Continue only if the account to claim has default values
if account_to_claim != Account::default() {
return;
panic!("Account is already initialized");
}
// Continue only if the owner authorized this operation
if !is_authorized {
return;
panic!("Missing required authorization");
}
// Noop will result in account being claimed for this program
write_nssa_outputs(
vec![pre_state],
vec![AccountPostState::new(account_to_claim)],
);
AccountPostState::new(account_to_claim)
}
/// Transfers `balance_to_move` native balance from `sender` to `recipient`.
fn transfer(sender: AccountWithMetadata, recipient: AccountWithMetadata, balance_to_move: u128) {
fn transfer(
sender: AccountWithMetadata,
recipient: AccountWithMetadata,
balance_to_move: u128,
) -> Vec<AccountPostState> {
// Continue only if the sender has authorized this operation
if !sender.is_authorized {
return;
panic!("Missing required authorization");
}
// This segment is a safe protection from authenticated transfer program
@ -50,29 +50,33 @@ fn transfer(sender: AccountWithMetadata, recipient: AccountWithMetadata, balance
sender_post.balance -= balance_to_move + malicious_offset;
recipient_post.balance += balance_to_move + malicious_offset;
write_nssa_outputs(
vec![sender, recipient],
vec![
AccountPostState::new(sender_post),
AccountPostState::new(recipient_post),
],
);
vec![
AccountPostState::new(sender_post),
AccountPostState::new(recipient_post),
]
}
/// A transfer of balance program.
/// To be used both in public and private contexts.
fn main() {
// Read input accounts.
let ProgramInput {
pre_states,
instruction: balance_to_move,
} = read_nssa_inputs();
let (
ProgramInput {
pre_states,
instruction: balance_to_move,
},
instruction_data,
) = read_nssa_inputs();
match (pre_states.as_slice(), balance_to_move) {
([account_to_claim], 0) => initialize_account(account_to_claim.clone()),
let post_states = match (pre_states.as_slice(), balance_to_move) {
([account_to_claim], 0) => {
let post = initialize_account(account_to_claim.clone());
vec![post]
}
([sender, recipient], balance_to_move) => {
transfer(sender.clone(), recipient.clone(), balance_to_move)
}
_ => panic!("invalid params"),
}
};
write_nssa_outputs(instruction_data, pre_states, post_states);
}

View File

@ -3,7 +3,7 @@ use nssa_core::program::{read_nssa_inputs, write_nssa_outputs, AccountPostState,
type Instruction = ();
fn main() {
let ProgramInput { pre_states, .. } = read_nssa_inputs::<Instruction>();
let (ProgramInput { pre_states, .. } , instruction_words) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -14,5 +14,5 @@ fn main() {
let mut account_post = account_pre.clone();
account_post.nonce += 1;
write_nssa_outputs(vec![pre], vec![AccountPostState::new(account_post)]);
write_nssa_outputs(instruction_words ,vec![pre], vec![AccountPostState::new(account_post)]);
}

View File

@ -3,7 +3,7 @@ use nssa_core::program::{read_nssa_inputs, write_nssa_outputs, AccountPostState,
type Instruction = ();
fn main() {
let ProgramInput { pre_states, .. } = read_nssa_inputs::<Instruction>();
let (ProgramInput { pre_states, .. }, instruction_words) = read_nssa_inputs::<Instruction>();
let [pre] = match pre_states.try_into() {
Ok(array) => array,
@ -14,5 +14,5 @@ fn main() {
let mut account_post = account_pre.clone();
account_post.program_owner = [0, 1, 2, 3, 4, 5, 6, 7];
write_nssa_outputs(vec![pre], vec![AccountPostState::new(account_post)]);
write_nssa_outputs(instruction_words, vec![pre], vec![AccountPostState::new(account_post)]);
}

View File

@ -3,10 +3,13 @@ use nssa_core::program::{AccountPostState, ProgramInput, read_nssa_inputs, write
type Instruction = u128;
fn main() {
let ProgramInput {
pre_states,
instruction: balance,
} = read_nssa_inputs::<Instruction>();
let (
ProgramInput {
pre_states,
instruction: balance,
},
instruction_words,
) = read_nssa_inputs::<Instruction>();
let [sender_pre, receiver_pre] = match pre_states.try_into() {
Ok(array) => array,
@ -19,6 +22,7 @@ fn main() {
receiver_post.balance += balance;
write_nssa_outputs(
instruction_words,
vec![sender_pre, receiver_pre],
vec![
AccountPostState::new(sender_post),

View File

@ -293,7 +293,7 @@ impl WalletCore {
.map(|keys| (keys.npk.clone(), keys.ssk.clone()))
.collect::<Vec<_>>(),
&acc_manager.private_account_auth(),
program,
&program.to_owned().into(),
)
.unwrap();

View File

@ -0,0 +1,161 @@
use common::{error::ExecutionFailureKind, sequencer_client::json::SendTxResponse};
use key_protocol::key_management::ephemeral_key_holder::EphemeralKeyHolder;
use nssa::{AccountId, privacy_preserving_transaction::circuit};
use nssa_core::{MembershipProof, SharedSecretKey, account::AccountWithMetadata};
use crate::{
WalletCore, helperfunctions::produce_random_nonces, transaction_utils::AccountPreparedData,
};
impl WalletCore {
pub async fn claim_pinata(
&self,
pinata_account_id: AccountId,
winner_account_id: AccountId,
solution: u128,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let account_ids = vec![pinata_account_id, winner_account_id];
let program_id = nssa::program::Program::pinata().id();
let message =
nssa::public_transaction::Message::try_new(program_id, account_ids, vec![], solution)
.unwrap();
let witness_set = nssa::public_transaction::WitnessSet::for_message(&message, &[]);
let tx = nssa::PublicTransaction::new(message, witness_set);
Ok(self.sequencer_client.send_tx_public(tx).await?)
}
pub async fn claim_pinata_private_owned_account_already_initialized(
&self,
pinata_account_id: AccountId,
winner_account_id: AccountId,
solution: u128,
winner_proof: MembershipProof,
) -> Result<(SendTxResponse, [SharedSecretKey; 1]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: winner_nsk,
npk: winner_npk,
ipk: winner_ipk,
auth_acc: winner_pre,
proof: _,
} = self
.private_acc_preparation(winner_account_id, true, false)
.await?;
let pinata_acc = self.get_account_public(pinata_account_id).await.unwrap();
let program = nssa::program::Program::pinata();
let pinata_pre = AccountWithMetadata::new(pinata_acc.clone(), false, pinata_account_id);
let eph_holder_winner = EphemeralKeyHolder::new(&winner_npk);
let shared_secret_winner = eph_holder_winner.calculate_shared_secret_sender(&winner_ipk);
let (output, proof) = circuit::execute_and_prove(
&[pinata_pre, winner_pre],
&nssa::program::Program::serialize_instruction(solution).unwrap(),
&[0, 1],
&produce_random_nonces(1),
&[(winner_npk.clone(), shared_secret_winner.clone())],
&[(winner_nsk.unwrap(), winner_proof)],
&program.into(),
)
.unwrap();
let message =
nssa::privacy_preserving_transaction::message::Message::try_from_circuit_output(
vec![pinata_account_id],
vec![],
vec![(
winner_npk.clone(),
winner_ipk.clone(),
eph_holder_winner.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let witness_set =
nssa::privacy_preserving_transaction::witness_set::WitnessSet::for_message(
&message,
proof,
&[],
);
let tx = nssa::privacy_preserving_transaction::PrivacyPreservingTransaction::new(
message,
witness_set,
);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret_winner],
))
}
pub async fn claim_pinata_private_owned_account_not_initialized(
&self,
pinata_account_id: AccountId,
winner_account_id: AccountId,
solution: u128,
) -> Result<(SendTxResponse, [SharedSecretKey; 1]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: _,
npk: winner_npk,
ipk: winner_ipk,
auth_acc: winner_pre,
proof: _,
} = self
.private_acc_preparation(winner_account_id, false, false)
.await?;
let pinata_acc = self.get_account_public(pinata_account_id).await.unwrap();
let program = nssa::program::Program::pinata();
let pinata_pre = AccountWithMetadata::new(pinata_acc.clone(), false, pinata_account_id);
let eph_holder_winner = EphemeralKeyHolder::new(&winner_npk);
let shared_secret_winner = eph_holder_winner.calculate_shared_secret_sender(&winner_ipk);
let (output, proof) = circuit::execute_and_prove(
&[pinata_pre, winner_pre],
&nssa::program::Program::serialize_instruction(solution).unwrap(),
&[0, 2],
&produce_random_nonces(1),
&[(winner_npk.clone(), shared_secret_winner.clone())],
&[],
&program.into(),
)
.unwrap();
let message =
nssa::privacy_preserving_transaction::message::Message::try_from_circuit_output(
vec![pinata_account_id],
vec![],
vec![(
winner_npk.clone(),
winner_ipk.clone(),
eph_holder_winner.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let witness_set =
nssa::privacy_preserving_transaction::witness_set::WitnessSet::for_message(
&message,
proof,
&[],
);
let tx = nssa::privacy_preserving_transaction::PrivacyPreservingTransaction::new(
message,
witness_set,
);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret_winner],
))
}
}

View File

@ -61,7 +61,7 @@ impl AccountManager {
}
PrivacyPreservingAccount::PrivateOwned(account_id) => {
let pre = private_acc_preparation(wallet, account_id).await?;
let mask = if pre.auth_acc.is_authorized { 1 } else { 2 };
let mask = if pre.pre_state.is_authorized { 1 } else { 2 };
(State::Private(pre), mask)
}
@ -72,7 +72,7 @@ impl AccountManager {
nsk: None,
npk,
ipk,
auth_acc,
pre_state: auth_acc,
proof: None,
};
@ -95,7 +95,7 @@ impl AccountManager {
.iter()
.map(|state| match state {
State::Public { account, .. } => account.clone(),
State::Private(pre) => pre.auth_acc.clone(),
State::Private(pre) => pre.pre_state.clone(),
})
.collect()
}
@ -168,7 +168,7 @@ struct AccountPreparedData {
nsk: Option<NullifierSecretKey>,
npk: NullifierPublicKey,
ipk: IncomingViewingPublicKey,
auth_acc: AccountWithMetadata,
pre_state: AccountWithMetadata,
proof: Option<MembershipProof>,
}
@ -206,7 +206,7 @@ async fn private_acc_preparation(
nsk,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
pre_state: sender_pre,
proof,
})
}

View File

@ -0,0 +1,592 @@
use common::{error::ExecutionFailureKind, sequencer_client::json::SendTxResponse};
use key_protocol::key_management::ephemeral_key_holder::EphemeralKeyHolder;
use nssa::{
Account, AccountId, PrivacyPreservingTransaction,
privacy_preserving_transaction::{circuit, message::Message, witness_set::WitnessSet},
program::Program,
};
use nssa_core::{
Commitment, MembershipProof, NullifierPublicKey, NullifierSecretKey, SharedSecretKey,
account::AccountWithMetadata, encryption::IncomingViewingPublicKey, program::InstructionData,
};
use crate::{WalletCore, helperfunctions::produce_random_nonces};
pub(crate) struct AccountPreparedData {
pub nsk: Option<NullifierSecretKey>,
pub npk: NullifierPublicKey,
pub ipk: IncomingViewingPublicKey,
pub auth_acc: AccountWithMetadata,
pub proof: Option<MembershipProof>,
}
impl WalletCore {
pub(crate) async fn private_acc_preparation(
&self,
account_id: AccountId,
is_authorized: bool,
needs_proof: bool,
) -> Result<AccountPreparedData, ExecutionFailureKind> {
let Some((from_keys, from_acc)) = self
.storage
.user_data
.get_private_account(&account_id)
.cloned()
else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let mut nsk = None;
let mut proof = None;
let from_npk = from_keys.nullifer_public_key;
let from_ipk = from_keys.incoming_viewing_public_key;
let sender_commitment = Commitment::new(&from_npk, &from_acc);
let sender_pre = AccountWithMetadata::new(from_acc.clone(), is_authorized, &from_npk);
if is_authorized {
nsk = Some(from_keys.private_key_holder.nullifier_secret_key);
}
if needs_proof {
proof = self
.sequencer_client
.get_proof_for_commitment(sender_commitment)
.await
.unwrap();
}
Ok(AccountPreparedData {
nsk,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
proof,
})
}
pub(crate) async fn private_tx_two_accs_all_init(
&self,
from: AccountId,
to: AccountId,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
to_proof: MembershipProof,
) -> Result<(SendTxResponse, [SharedSecretKey; 2]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: from_nsk,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
proof: from_proof,
} = self.private_acc_preparation(from, true, true).await?;
let AccountPreparedData {
nsk: to_nsk,
npk: to_npk,
ipk: to_ipk,
auth_acc: recipient_pre,
proof: _,
} = self.private_acc_preparation(to, true, false).await?;
tx_pre_check(&sender_pre.account, &recipient_pre.account)?;
let eph_holder_from = EphemeralKeyHolder::new(&from_npk);
let shared_secret_from = eph_holder_from.calculate_shared_secret_sender(&from_ipk);
let eph_holder_to = EphemeralKeyHolder::new(&to_npk);
let shared_secret_to = eph_holder_to.calculate_shared_secret_sender(&to_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[1, 1],
&produce_random_nonces(2),
&[
(from_npk.clone(), shared_secret_from.clone()),
(to_npk.clone(), shared_secret_to.clone()),
],
&[
(from_nsk.unwrap(), from_proof.unwrap()),
(to_nsk.unwrap(), to_proof),
],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![],
vec![],
vec![
(
from_npk.clone(),
from_ipk.clone(),
eph_holder_from.generate_ephemeral_public_key(),
),
(
to_npk.clone(),
to_ipk.clone(),
eph_holder_to.generate_ephemeral_public_key(),
),
],
output,
)
.unwrap();
let witness_set = WitnessSet::for_message(&message, proof, &[]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret_from, shared_secret_to],
))
}
pub(crate) async fn private_tx_two_accs_receiver_uninit(
&self,
from: AccountId,
to: AccountId,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
) -> Result<(SendTxResponse, [SharedSecretKey; 2]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: from_nsk,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
proof: from_proof,
} = self.private_acc_preparation(from, true, true).await?;
let AccountPreparedData {
nsk: _,
npk: to_npk,
ipk: to_ipk,
auth_acc: recipient_pre,
proof: _,
} = self.private_acc_preparation(to, false, false).await?;
tx_pre_check(&sender_pre.account, &recipient_pre.account)?;
let eph_holder_from = EphemeralKeyHolder::new(&from_npk);
let shared_secret_from = eph_holder_from.calculate_shared_secret_sender(&from_ipk);
let eph_holder_to = EphemeralKeyHolder::new(&to_npk);
let shared_secret_to = eph_holder_to.calculate_shared_secret_sender(&to_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[1, 2],
&produce_random_nonces(2),
&[
(from_npk.clone(), shared_secret_from.clone()),
(to_npk.clone(), shared_secret_to.clone()),
],
&[(from_nsk.unwrap(), from_proof.unwrap())],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![],
vec![],
vec![
(
from_npk.clone(),
from_ipk.clone(),
eph_holder_from.generate_ephemeral_public_key(),
),
(
to_npk.clone(),
to_ipk.clone(),
eph_holder_to.generate_ephemeral_public_key(),
),
],
output,
)
.unwrap();
let witness_set = WitnessSet::for_message(&message, proof, &[]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret_from, shared_secret_to],
))
}
pub(crate) async fn private_tx_two_accs_receiver_outer(
&self,
from: AccountId,
to_npk: NullifierPublicKey,
to_ipk: IncomingViewingPublicKey,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
) -> Result<(SendTxResponse, [SharedSecretKey; 2]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: from_nsk,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
proof: from_proof,
} = self.private_acc_preparation(from, true, true).await?;
let to_acc = nssa_core::account::Account::default();
tx_pre_check(&sender_pre.account, &to_acc)?;
let recipient_pre = AccountWithMetadata::new(to_acc.clone(), false, &to_npk);
let eph_holder = EphemeralKeyHolder::new(&to_npk);
let shared_secret_from = eph_holder.calculate_shared_secret_sender(&from_ipk);
let shared_secret_to = eph_holder.calculate_shared_secret_sender(&to_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[1, 2],
&produce_random_nonces(2),
&[
(from_npk.clone(), shared_secret_from.clone()),
(to_npk.clone(), shared_secret_to.clone()),
],
&[(from_nsk.unwrap(), from_proof.unwrap())],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![],
vec![],
vec![
(
from_npk.clone(),
from_ipk.clone(),
eph_holder.generate_ephemeral_public_key(),
),
(
to_npk.clone(),
to_ipk.clone(),
eph_holder.generate_ephemeral_public_key(),
),
],
output,
)
.unwrap();
let witness_set = WitnessSet::for_message(&message, proof, &[]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret_from, shared_secret_to],
))
}
pub(crate) async fn deshielded_tx_two_accs(
&self,
from: AccountId,
to: AccountId,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
) -> Result<(SendTxResponse, [nssa_core::SharedSecretKey; 1]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: from_nsk,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
proof: from_proof,
} = self.private_acc_preparation(from, true, true).await?;
let Ok(to_acc) = self.get_account_public(to).await else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
tx_pre_check(&sender_pre.account, &to_acc)?;
let recipient_pre = AccountWithMetadata::new(to_acc.clone(), false, to);
let eph_holder = EphemeralKeyHolder::new(&from_npk);
let shared_secret = eph_holder.calculate_shared_secret_sender(&from_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[1, 0],
&produce_random_nonces(1),
&[(from_npk.clone(), shared_secret.clone())],
&[(from_nsk.unwrap(), from_proof.unwrap())],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![to],
vec![],
vec![(
from_npk.clone(),
from_ipk.clone(),
eph_holder.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let witness_set = WitnessSet::for_message(&message, proof, &[]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret],
))
}
pub(crate) async fn shielded_two_accs_all_init(
&self,
from: AccountId,
to: AccountId,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
to_proof: MembershipProof,
) -> Result<(SendTxResponse, [SharedSecretKey; 1]), ExecutionFailureKind> {
let Ok(from_acc) = self.get_account_public(from).await else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let AccountPreparedData {
nsk: to_nsk,
npk: to_npk,
ipk: to_ipk,
auth_acc: recipient_pre,
proof: _,
} = self.private_acc_preparation(to, true, false).await?;
tx_pre_check(&from_acc, &recipient_pre.account)?;
let sender_pre = AccountWithMetadata::new(from_acc.clone(), true, from);
let eph_holder = EphemeralKeyHolder::new(&to_npk);
let shared_secret = eph_holder.calculate_shared_secret_sender(&to_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[0, 1],
&produce_random_nonces(1),
&[(to_npk.clone(), shared_secret.clone())],
&[(to_nsk.unwrap(), to_proof)],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![from],
vec![from_acc.nonce],
vec![(
to_npk.clone(),
to_ipk.clone(),
eph_holder.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let signing_key = self.storage.user_data.get_pub_account_signing_key(&from);
let Some(signing_key) = signing_key else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let witness_set = WitnessSet::for_message(&message, proof, &[signing_key]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret],
))
}
pub(crate) async fn shielded_two_accs_receiver_uninit(
&self,
from: AccountId,
to: AccountId,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
) -> Result<(SendTxResponse, [SharedSecretKey; 1]), ExecutionFailureKind> {
let Ok(from_acc) = self.get_account_public(from).await else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let AccountPreparedData {
nsk: _,
npk: to_npk,
ipk: to_ipk,
auth_acc: recipient_pre,
proof: _,
} = self.private_acc_preparation(to, false, false).await?;
tx_pre_check(&from_acc, &recipient_pre.account)?;
let sender_pre = AccountWithMetadata::new(from_acc.clone(), true, from);
let eph_holder = EphemeralKeyHolder::new(&to_npk);
let shared_secret = eph_holder.calculate_shared_secret_sender(&to_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[0, 2],
&produce_random_nonces(1),
&[(to_npk.clone(), shared_secret.clone())],
&[],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![from],
vec![from_acc.nonce],
vec![(
to_npk.clone(),
to_ipk.clone(),
eph_holder.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let signing_key = self.storage.user_data.get_pub_account_signing_key(&from);
let Some(signing_key) = signing_key else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let witness_set = WitnessSet::for_message(&message, proof, &[signing_key]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret],
))
}
pub(crate) async fn shielded_two_accs_receiver_outer(
&self,
from: AccountId,
to_npk: NullifierPublicKey,
to_ipk: IncomingViewingPublicKey,
instruction_data: InstructionData,
tx_pre_check: impl FnOnce(&Account, &Account) -> Result<(), ExecutionFailureKind>,
program: Program,
) -> Result<SendTxResponse, ExecutionFailureKind> {
let Ok(from_acc) = self.get_account_public(from).await else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let to_acc = Account::default();
tx_pre_check(&from_acc, &to_acc)?;
let sender_pre = AccountWithMetadata::new(from_acc.clone(), true, from);
let recipient_pre = AccountWithMetadata::new(to_acc.clone(), false, &to_npk);
let eph_holder = EphemeralKeyHolder::new(&to_npk);
let shared_secret = eph_holder.calculate_shared_secret_sender(&to_ipk);
let (output, proof) = circuit::execute_and_prove(
&[sender_pre, recipient_pre],
&instruction_data,
&[0, 2],
&produce_random_nonces(1),
&[(to_npk.clone(), shared_secret.clone())],
&[],
&program.into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![from],
vec![from_acc.nonce],
vec![(
to_npk.clone(),
to_ipk.clone(),
eph_holder.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let signing_key = self.storage.user_data.get_pub_account_signing_key(&from);
let Some(signing_key) = signing_key else {
return Err(ExecutionFailureKind::KeyNotFoundError);
};
let witness_set = WitnessSet::for_message(&message, proof, &[signing_key]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok(self.sequencer_client.send_tx_private(tx).await?)
}
pub async fn register_account_under_authenticated_transfers_programs_private(
&self,
from: AccountId,
) -> Result<(SendTxResponse, [SharedSecretKey; 1]), ExecutionFailureKind> {
let AccountPreparedData {
nsk: _,
npk: from_npk,
ipk: from_ipk,
auth_acc: sender_pre,
proof: _,
} = self.private_acc_preparation(from, false, false).await?;
let eph_holder_from = EphemeralKeyHolder::new(&from_npk);
let shared_secret_from = eph_holder_from.calculate_shared_secret_sender(&from_ipk);
let instruction: u128 = 0;
let (output, proof) = circuit::execute_and_prove(
&[sender_pre],
&Program::serialize_instruction(instruction).unwrap(),
&[2],
&produce_random_nonces(1),
&[(from_npk.clone(), shared_secret_from.clone())],
&[],
&Program::authenticated_transfer_program().into(),
)
.unwrap();
let message = Message::try_from_circuit_output(
vec![],
vec![],
vec![(
from_npk.clone(),
from_ipk.clone(),
eph_holder_from.generate_ephemeral_public_key(),
)],
output,
)
.unwrap();
let witness_set = WitnessSet::for_message(&message, proof, &[]);
let tx = PrivacyPreservingTransaction::new(message, witness_set);
Ok((
self.sequencer_client.send_tx_private(tx).await?,
[shared_secret_from],
))
}
}