add variable number of inputs/outputs with visibility

This commit is contained in:
Sergio Chouhy 2025-07-14 19:25:41 -03:00
parent 0431b640f0
commit 1f1031cca5
5 changed files with 156 additions and 79 deletions

View File

@ -1,47 +1,59 @@
#![cfg_attr(not(test), no_std)]
use serde::{Serialize, Deserialize};
use risc0_zkvm::{sha::{Impl, Sha256}, serde::to_vec};
use risc0_zkvm::{
serde::to_vec,
sha::{Impl, Sha256},
};
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq)]
pub struct Account {
pub address: [u32; 8],
pub balance: u128,
pub nonce: [u32; 8]
pub nonce: [u32; 8],
}
impl Account {
/// Creates a new account with address = hash(private_key) and balance = 0
pub fn new_from_private_key(private_key: [u32; 8], nonce: [u32; 8]) -> Self {
let address = hash(&private_key);
Self { address, balance: 0, nonce }
Self {
address,
balance: 0,
nonce,
}
}
pub fn new(address: [u32; 8], nonce: [u32; 8]) -> Self {
Self { address, balance: 0, nonce }
Self {
address,
balance: 0,
nonce,
}
}
/// Returns Hash(Account)
pub fn commitment(&self) -> [u32; 8] {
hash(&to_vec(&self).unwrap())
}
}
pub fn hash(bytes: &[u32]) -> [u32; 8] {
Impl::hash_words(&bytes).as_words().try_into().unwrap()
Impl::hash_words(bytes).as_words().try_into().unwrap()
}
/// Dummy implementation
pub fn is_in_commitment_tree(_commitment: [u32; 8], _tree_root: [u32; 8]) -> bool {
// Dummy implementation
true
}
/// Returns Hash(Commitment || private_key)
pub fn compute_nullifier(commitment: [u32; 8], private_key: [u32; 8]) -> [u32; 8] {
pub fn compute_nullifier(commitment: &[u32; 8], private_key: &[u32; 8]) -> [u32; 8] {
let mut bytes_to_hash = [0; 16];
bytes_to_hash[..8].copy_from_slice(&commitment);
bytes_to_hash[8..].copy_from_slice(&private_key);
bytes_to_hash[..8].copy_from_slice(commitment);
bytes_to_hash[8..].copy_from_slice(private_key);
hash(&bytes_to_hash)
}
/// Dummy implementation
pub fn new_random_nonce() -> [u32; 8] {
[0xcc, 0xaa, 0xff, 0xee, 0xcc, 0xaa, 0xff, 0xff]
}

View File

@ -0,0 +1,12 @@
use serde::{Deserialize, Serialize};
pub type PrivateKey = [u32; 8];
#[derive(Serialize, Deserialize)]
pub enum InputVisibiility {
// A public account
Public,
// A private account
Private(Option<PrivateKey>),
}

View File

@ -1 +1,3 @@
pub mod account;
pub mod input;

View File

@ -1,57 +1,88 @@
use risc0_zkvm::{guest::env, sha::{Impl, Sha256}, serde::to_vec};
use toy_example_core::account::{Account, hash, compute_nullifier, is_in_commitment_tree};
use risc0_zkvm::{
guest::env,
serde::to_vec,
sha::{Impl, Sha256},
};
use toy_example_core::{
account::{compute_nullifier, hash, is_in_commitment_tree, Account},
input::InputVisibiility,
};
/// Private execution logic.
/// Circuit for proving correct execution of some program with program id
/// equal to `program_id` (last input).
///
///
/// Currently only supports private execution of a program with two input accounts, one
/// of which must be a fresh new account (`account_2`) (for example a private transfer function).
///
///
/// This circuit checks:
/// - That accounts pre states and post states are consistent with the execution of the given `program_id`.
/// - That `account_2` is fresh (meaning, for this toy example, that it has 0 balance).
/// - That `program_id` execution didn't change addresses of the accounts.
///
///
/// Outputs:
/// - The nullifier for the only existing input account (account_1)
/// - The commitments for the private accounts post states.
fn main() {
// Read inputs
let account_1_private_key: [u32; 8] = env::read();
let account_1: Account = env::read();
let account_2: Account = env::read();
let account_1_post: Account = env::read();
let account_2_post: Account = env::read();
let num_inputs: u32 = env::read();
// Read inputs and outputs
let mut inputs_outputs = Vec::new();
for _ in 0..(2 * num_inputs) {
let account: Account = env::read();
inputs_outputs.push(account);
}
// Read visibilities
let mut input_visibilities = Vec::new();
for _ in 0..num_inputs {
let input_visibility: InputVisibiility = env::read();
input_visibilities.push(input_visibility);
}
let commitment_tree_root: [u32; 8] = env::read();
let program_id: [u32; 8] = env::read();
// Assert account_2 is a fresh account
assert_eq!(account_2.balance, 0);
let inputs = inputs_outputs.iter().take(num_inputs as usize);
let mut nullifiers = Vec::new();
for (visibility, input_account) in input_visibilities.iter().zip(inputs) {
match visibility {
InputVisibiility::Private(Some(private_key)) => {
// Prove ownership of input accounts by proving
// knowledge of the pre-image of their addresses.
assert_eq!(hash(private_key), input_account.address);
// Check the input account was created by a previous transaction
// by checking it belongs to the commitments tree.
let commitment = input_account.commitment();
assert!(is_in_commitment_tree(commitment, commitment_tree_root));
// Compute nullifier to nullify this private input account.
let nullifier = compute_nullifier(&commitment, &private_key);
nullifiers.push(nullifier);
}
InputVisibiility::Private(None) => {
// Private accounts without a companion private key are
// enforced to have default values
assert_eq!(input_account.balance, 0);
}
// No checks on public accounts
InputVisibiility::Public => continue,
}
}
let outputs = inputs_outputs.iter().skip(num_inputs as usize);
let output_commitments: Vec<_> = outputs.map(|account| account.commitment()).collect();
// Prove ownership of account_1 account by proving
// knowledge of the pre-image of its address
assert_eq!(hash(&account_1_private_key), account_1.address);
// Compute account_1 account commitment and prove it belongs to commitments tree
let account_1_commitment = account_1.commitment();
assert!(is_in_commitment_tree(account_1_commitment, commitment_tree_root)); // <- Dummy implementation
// Compute nullifier of account_1 account
let account_1_nullifier = compute_nullifier(account_1_commitment, account_1_private_key);
// Compute accounts post states commitments
let account_1_post_commitment = account_1_post.commitment();
let account_2_post_commitment = account_2_post.commitment();
// Assert `program_id` program didn't modify address fields
for (account_pre, account_post) in inputs_outputs
.iter()
.take(num_inputs as usize)
.zip(inputs_outputs.iter().skip(num_inputs as usize))
{
assert_eq!(account_pre.address, account_post.address);
}
// Verify pre states and post states of accounts are consistent
// with the execution of the `program_id`` program
env::verify(program_id, &to_vec(&(account_1.clone(), account_2.clone(), account_1_post.clone(), account_2_post.clone())).unwrap()).unwrap();
env::verify(program_id, &to_vec(&inputs_outputs).unwrap()).unwrap();
// Assert `program_id` program didn't modify address fields
assert_eq!(account_1.address, account_1_post.address);
assert_eq!(account_2.address, account_2_post.address);
// Output nullifier and commitments of new private accounts
env::commit(&(account_1_nullifier, account_1_post_commitment, account_2_post_commitment));
// Output nullifier of consumed input accounts and commitments of new output private accounts
env::commit(&(nullifiers, output_commitments));
}

View File

@ -1,17 +1,22 @@
use transfer_methods::{
TRANSFER_ELF, TRANSFER_ID
};
use outer_methods::{
OUTER_ELF, OUTER_ID
};
use outer_methods::{OUTER_ELF, OUTER_ID};
use risc0_zkvm::{default_prover, ExecutorEnv, Receipt};
use toy_example_core::account::Account;
use toy_example_core::{
account::{new_random_nonce, Account},
input::InputVisibiility,
};
use transfer_methods::{TRANSFER_ELF, TRANSFER_ID};
const COMMITMENT_TREE_ROOT: [u32; 8] = [0xdd, 0xee, 0xaa, 0xdd, 0xbb, 0xee, 0xee, 0xff];
fn mint_fresh_account(address: [u32; 8]) -> Account {
let nonce = new_random_nonce();
Account::new(address, nonce)
}
/// A private execution of the transfer function.
/// This actually "burns" a sender private account and "mints" two new private accounts:
/// one for the recipient with the transferred balance, and another owned by the sender with the remaining balance.
fn run_private_execution_of_transfer_program() {
let commitment_tree_root = [0xdd, 0xee, 0xaa, 0xdd, 0xbb, 0xee, 0xee, 0xff];
// This is supposed to be an existing private account (UTXO) with balance equal to 150.
// And it is supposed to be a private account of the user running this private execution (hence the access to the private key)
let sender_private_key = [0; 8];
@ -21,47 +26,60 @@ fn run_private_execution_of_transfer_program() {
account.balance = 150;
account
};
let balance_to_move: u128 = 3;
// This is the new private account (UTXO) being minted by this private execution.
// (The `receiver_address` would be <Npk> in UTXO's terminology)
let receiver_address = [99; 8];
let receiver = Account::new(receiver_address, [1; 8]);
let receiver_address = [99; 8];
let receiver = mint_fresh_account(receiver_address);
// Prove inner program and get post state of the accounts
let (inner_receipt, sender_post, receiver_post) = prove_inner(sender.clone(), receiver.clone(), balance_to_move);
let (inner_receipt, outputs) = prove_inner(&sender, &receiver, balance_to_move);
let visibilities = vec![
InputVisibiility::Private(Some(sender_private_key)),
InputVisibiility::Private(None),
];
let inputs_outputs = {
let mut vec = vec![sender, receiver];
vec.extend_from_slice(&outputs);
vec
};
let num_inputs: u32 = inputs_outputs.len() as u32 / 2;
// Prove outer program.
// This computes the nullifier for the input account
// and commitments for the accounts post states.
let mut env_builder = ExecutorEnv::builder();
env_builder.add_assumption(inner_receipt);
env_builder.write(&sender_private_key).unwrap();
env_builder.write(&sender).unwrap();
env_builder.write(&receiver) .unwrap();
env_builder.write(&sender_post).unwrap();
env_builder.write(&receiver_post).unwrap();
env_builder.write(&commitment_tree_root).unwrap();
env_builder.write(&num_inputs).unwrap();
env_builder.write(&inputs_outputs).unwrap();
env_builder.write(&visibilities).unwrap();
env_builder.write(&COMMITMENT_TREE_ROOT).unwrap();
env_builder.write(&TRANSFER_ID).unwrap();
let env = env_builder.build().unwrap();
let prover = default_prover();
let prove_info = prover
.prove(env, OUTER_ELF)
.unwrap();
let prove_info = prover.prove(env, OUTER_ELF).unwrap();
let receipt = prove_info.receipt;
// Sanity check
receipt.verify(OUTER_ID).unwrap();
let output: [[u32; 8]; 3] = receipt.journal.decode().unwrap();
println!("nullifier: {:?}", output[0]);
println!("commitment_1: {:?}", output[1]);
println!("commitment_2: {:?}", output[2]);
}
fn prove_inner(sender: Account, receiver: Account, balance_to_move: u128) -> (Receipt, Account, Account) {
fn prove_inner(
sender: &Account,
receiver: &Account,
balance_to_move: u128,
) -> (Receipt, Vec<Account>) {
let mut env_builder = ExecutorEnv::builder();
env_builder.write(&sender).unwrap();
env_builder.write(&receiver).unwrap();
@ -69,24 +87,26 @@ fn prove_inner(sender: Account, receiver: Account, balance_to_move: u128) -> (Re
let env = env_builder.build().unwrap();
let prover = default_prover();
let prove_info = prover
.prove(env, TRANSFER_ELF)
.unwrap();
let prove_info = prover.prove(env, TRANSFER_ELF).unwrap();
let receipt = prove_info.receipt;
let output: [Account; 4] = receipt.journal.decode().unwrap();
let [_, _, sender_post, receiver_post] = output;
println!("sender_before: {:?}, sender_after: {:?}", sender, sender_post);
println!("receiver_before: {:?}, receiver_after: {:?}", receiver, receiver_post);
println!(
"sender_before: {:?}, sender_after: {:?}",
sender, sender_post
);
println!(
"receiver_before: {:?}, receiver_after: {:?}",
receiver, receiver_post
);
// Sanity check
receipt
.verify(TRANSFER_ID)
.unwrap();
receipt.verify(TRANSFER_ID).unwrap();
(receipt, sender_post, receiver_post)
(receipt, vec![sender_post, receiver_post])
}
#[cfg(test)]