2024-06-10 16:16:27 +09:00

289 lines
12 KiB
Python

from collections import Counter
from typing import TYPE_CHECKING
import numpy as np
import pandas as pd
import scipy.stats as stats
import seaborn
from matplotlib import pyplot as plt
from adversary import NodeState
from config import Config
from simulation import Simulation
if TYPE_CHECKING:
from node import Node
COL_TIME = "Time"
COL_NODE_ID = "Node ID"
COL_MSG_CNT = "Message Count"
COL_SENDER_CNT = "Sender Count"
COL_NODE_STATE = "Node State"
COL_HOPS = "Hops"
COL_EXPECTED = "Expected"
COL_MSG_SIZE = "Message Size"
COL_EGRESS = "Egress"
COL_INGRESS = "Ingress"
class Analysis:
def __init__(self, sim: Simulation, config: Config):
self.sim = sim
self.config = config
def run(self):
message_size_df = self.message_size_distribution()
self.bandwidth(message_size_df)
self.messages_emitted_around_interval()
self.messages_in_node_over_time()
# self.node_states()
median_hops = self.message_hops()
self.timing_attack(median_hops)
def bandwidth(self, message_size_df: pd.DataFrame):
dataframes = []
nonzero_egresses = []
nonzero_ingresses = []
for egress_bandwidths, ingress_bandwidths in zip(self.sim.p2p.measurement.egress_bandwidth_per_time,
self.sim.p2p.measurement.ingress_bandwidth_per_time):
rows = []
for node in self.sim.p2p.nodes:
egress = egress_bandwidths[node] / 1024.0
ingress = ingress_bandwidths[node] / 1024.0
rows.append((node.id, egress, ingress))
if egress > 0:
nonzero_egresses.append(egress)
if ingress > 0:
nonzero_ingresses.append(ingress)
df = pd.DataFrame(rows, columns=[COL_NODE_ID, COL_EGRESS, COL_INGRESS])
dataframes.append(df)
times = range(len(dataframes))
df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, times)], ignore_index=True)
df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=[COL_EGRESS, COL_INGRESS])
plt.figure(figsize=(12, 6))
for column in df.columns:
marker = "x" if column[0] == COL_INGRESS else "o"
plt.plot(df.index, df[column], marker=marker, label=column[0])
plt.title("Egress/ingress bandwidth of each node over time")
plt.xlabel(COL_TIME)
plt.ylabel("Bandwidth (KiB/s)")
plt.ylim(bottom=0)
# Customize the legend to show only 'egress' and 'ingress' regardless of node_id
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
plt.grid(True)
# Adding descriptions on the right size of the plot
egress_series = pd.Series(nonzero_egresses)
ingress_series = pd.Series(nonzero_ingresses)
desc = (
f"message: {message_size_df[COL_MSG_SIZE].mean():.0f} bytes\n"
f"{self.config.description()}\n\n"
f"[egress(>0)]\nmean: {egress_series.mean():.2f} KiB/s\nmax: {egress_series.max():.2f} KiB/s\n\n"
f"[ingress(>0)]\nmean: {ingress_series.mean():.2f} KiB/s\nmax: {ingress_series.max():.2f} KiB/s"
)
plt.text(1.02, 0.5, desc, transform=plt.gca().transAxes, verticalalignment="center", fontsize=12)
plt.subplots_adjust(right=0.8) # Adjust layout to make room for the text
plt.show()
def message_size_distribution(self) -> pd.DataFrame:
df = pd.DataFrame(self.sim.p2p.adversary.message_sizes, columns=[COL_MSG_SIZE])
print(df.describe())
return df
def messages_emitted_around_interval(self):
# A ground truth that shows how many times each node sent a real message
truth_df = pd.DataFrame(
[(node.id, count) for node, count in self.sim.p2p.measurement.original_senders.items()],
columns=[COL_NODE_ID, COL_MSG_CNT])
# A result of observing nodes who have sent messages around the promised message interval
suspected_df = pd.DataFrame(
[(node.id, self.sim.p2p.adversary.senders_around_interval[node]) for node in
self.sim.p2p.measurement.original_senders.keys()],
columns=[COL_NODE_ID, COL_MSG_CNT]
)
width = 0.4
fig, ax = plt.subplots(figsize=(12, 8))
ax.bar(truth_df[COL_NODE_ID] - width / 2, truth_df[COL_MSG_CNT], width, label="Ground Truth", color="b")
ax.bar(truth_df[COL_NODE_ID] + width / 2, suspected_df[COL_MSG_CNT], width, label="Adversary's Inference",
color="r")
ax.set_title("Nodes who generated real messages")
ax.set_xlabel(COL_NODE_ID)
ax.set_ylabel(COL_MSG_CNT)
ax.set_xlim(-1, len(truth_df[COL_NODE_ID]))
ax.legend()
plt.tight_layout()
plt.show()
def messages_in_node_over_time(self):
dataframes = []
for window, msg_pools in enumerate(self.sim.p2p.adversary.msg_pools_per_window):
time = window * self.config.adversary.window_size
data = []
for receiver, msg_pool in msg_pools.items():
senders = self.sim.p2p.adversary.msgs_received_per_window[window][receiver]
data.append((time, receiver.id, len(msg_pool), len(senders)))
df = pd.DataFrame(data, columns=[COL_TIME, COL_NODE_ID, COL_MSG_CNT, COL_SENDER_CNT])
if not df.empty:
dataframes.append(df)
df = pd.concat(dataframes, ignore_index=True)
msg_cnt_df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=COL_MSG_CNT)
plt.figure(figsize=(12, 6))
for column in msg_cnt_df.columns:
plt.plot(msg_cnt_df.index, msg_cnt_df[column], marker=None, label=column)
plt.title("Messages within each node over time")
plt.xlabel(COL_TIME)
plt.ylabel(COL_MSG_CNT)
plt.ylim(bottom=0)
plt.grid(True)
plt.tight_layout()
plt.show()
sender_cnt_df = df.pivot(index=COL_TIME, columns=COL_NODE_ID, values=COL_SENDER_CNT)
plt.figure(figsize=(12, 6))
for column in sender_cnt_df.columns:
plt.plot(sender_cnt_df.index, sender_cnt_df[column], marker=None, label=column)
plt.title("Diversity of senders of messages received by each node over time")
plt.xlabel(COL_TIME)
plt.ylabel("# of senders of messages received by each node")
plt.ylim(bottom=0)
plt.grid(True)
plt.tight_layout()
plt.show()
plt.figure(figsize=(12, 6))
df.boxplot(column=COL_SENDER_CNT, by=COL_TIME, medianprops={"color": "red", "linewidth": 2.5})
plt.title("Diversity of senders of messages received by each node over time")
plt.suptitle("")
plt.xticks([])
plt.xlabel(COL_TIME)
plt.ylabel("# of senders of messages received by each node")
plt.ylim(bottom=0)
plt.grid(axis="x")
plt.tight_layout()
plt.show()
def node_states(self):
rows = []
for time, node_states in self.sim.p2p.adversary.node_states.items():
for node, state in node_states.items():
rows.append((time, node.id, state))
df = pd.DataFrame(rows, columns=[COL_TIME, COL_NODE_ID, COL_NODE_STATE])
plt.figure(figsize=(10, 6))
seaborn.scatterplot(data=df, x=COL_TIME, y=COL_NODE_ID, hue=COL_NODE_STATE,
palette={NodeState.SENDING: "red", NodeState.RECEIVING: "blue"})
plt.title("Node states over time")
plt.xlabel(COL_TIME)
plt.ylabel(COL_NODE_ID)
plt.legend(title=COL_NODE_STATE)
plt.show()
def message_hops(self) -> int:
df = pd.DataFrame(self.sim.p2p.measurement.message_hops.values(), columns=[COL_HOPS])
print(df.describe())
plt.figure(figsize=(6, 6))
seaborn.boxplot(data=df, y=COL_HOPS, medianprops={"color": "red", "linewidth": 2.5})
plt.ylim(bottom=0)
plt.title("Message hops distribution")
plt.show()
return int(df.median().iloc[0])
def timing_attack(self, hops_between_layers: int):
hops_to_observe = hops_between_layers * (self.config.mixnet.num_mix_layers + 1)
suspected_senders = Counter()
for receiver, windows_and_senders in self.sim.p2p.adversary.final_msgs_received.items():
for window, sender in windows_and_senders.items():
suspected_senders.update(self.timing_attack_with(receiver, window, hops_to_observe, sender))
suspected_senders = ({node.id: count for node, count in suspected_senders.items()})
print(f"suspected nodes count: {len(suspected_senders)}")
# Create the bar plot for original sender counts
original_senders = ({node.id: count for node, count in self.sim.p2p.measurement.original_senders.items()})
plt.figure(figsize=(12, 8))
plt.bar(list(original_senders.keys()), list(original_senders.values()))
plt.xlabel("Node ID")
plt.ylabel("Counts")
plt.title("Original Sender Counts")
plt.xlim(-1, self.config.mixnet.num_nodes)
plt.show()
# Create the bar plot for suspected sender counts
keys = list(suspected_senders.keys())
values = list(suspected_senders.values())
# Create the bar plot
plt.figure(figsize=(12, 8))
plt.bar(keys, values)
plt.xlabel("Node ID")
plt.ylabel("Counts")
plt.title("Suspected Sender Counts")
plt.xlim(-1, self.config.mixnet.num_nodes)
plt.show()
# Create the bar plot for broadcasters
broadcasters = ({node.id: count for node, count in self.sim.p2p.broadcasters.items()})
plt.figure(figsize=(12, 8))
plt.bar(list(broadcasters.keys()), list(broadcasters.values()))
plt.xlabel("Node ID")
plt.ylabel("Counts")
plt.title("Broadcasters")
plt.xlim(-1, self.config.mixnet.num_nodes)
plt.show()
# Calculate the mean and standard deviation of the counts
mean = np.mean(values)
std_dev = np.std(values)
# Plot the histogram of the values
plt.figure(figsize=(12, 8))
plt.hist(values, bins=30, density=True, alpha=0.6, color="g", label="Counts Histogram")
# Plot the normal distribution curve
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, mean, std_dev)
plt.plot(x, p, "k", linewidth=2, label="Normal Distribution")
title = "Fit results: mean = %.2f, std_dev = %.2f" % (mean, std_dev)
plt.title(title)
plt.xlabel("Counts")
plt.ylabel("Density")
plt.legend()
plt.show()
def timing_attack_with(self, receiver: "Node", window: int, remaining_hops: int, sender: "Node" = None) -> Counter:
assert remaining_hops >= 1
# Start inspecting senders who sent messages that were arrived in the receiver at the given window
if sender is not None:
senders = {sender}
else:
senders = self.sim.p2p.adversary.msgs_received_per_window[window][receiver]
# If the remaining_hops is 1, return the senders as suspected senders
if remaining_hops == 1:
return Counter(senders)
# A result to be returned after inspecting all senders who sent messages to the receiver
suspected_senders = Counter()
# Inspect each sender who sent messages to the receiver
for sender in senders:
# Track back to each window where that sender might have received any messages.
time_range = self.config.mixnet.max_mix_delay + self.config.p2p.max_network_latency
window_range = int(time_range / self.config.adversary.window_size)
for prev_window in range(window - 1, window - 1 - window_range, -1):
if prev_window < 0:
break
suspected_senders.update(self.timing_attack_with(sender, prev_window, remaining_hops - 1))
return suspected_senders
@staticmethod
def print_nodes_per_hop(nodes_per_hop, starting_window: int):
for hop, nodes in enumerate(nodes_per_hop):
print(f"hop-{hop} from w-{starting_window}: {len(nodes)} nodes: {sorted([node.id for node in nodes])}")