mirror of
https://github.com/logos-blockchain/logos-blockchain-specs.git
synced 2026-01-15 11:33:12 +00:00
153 lines
6.5 KiB
Python
153 lines
6.5 KiB
Python
import argparse
|
|
from datetime import datetime
|
|
|
|
import pandas as pd
|
|
from matplotlib import pyplot as plt
|
|
|
|
from analysis import Analysis
|
|
from config import Config, P2PConfig
|
|
from simulation import Simulation
|
|
|
|
COL_P2P_TYPE = "p2p_type"
|
|
COL_NUM_MIX_LAYERS = "num_mix_layers"
|
|
COL_COVER_MESSAGE_PROB = "cover_message_prob"
|
|
COL_MIX_DELAY = "mix_delay"
|
|
COL_GLOBAL_PRECISION = "global_precision"
|
|
COL_GLOBAL_RECALL = "global_recall"
|
|
COL_GLOBAL_F1_SCORE = "global_f1_score"
|
|
COL_TARGET_ACCURACY_MEDIAN = "target_accuracy_median"
|
|
COL_TARGET_ACCURACY_STD = "target_accuracy_std"
|
|
COL_TARGET_ACCURACY_MIN = "target_accuracy_min"
|
|
COL_TARGET_ACCURACY_25p = "target_accuracy_25p"
|
|
COL_TARGET_ACCURACY_MEAN = "target_accuracy_mean"
|
|
COL_TARGET_ACCURACY_75p = "target_accuracy_75p"
|
|
COL_TARGET_ACCURACY_MAX = "target_accuracy_max"
|
|
|
|
|
|
def bulk_attack():
|
|
parser = argparse.ArgumentParser(description="Run multiple passive adversary attack simulations",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument("--config", type=str, required=True, help="Configuration file path")
|
|
args = parser.parse_args()
|
|
config = Config.load(args.config)
|
|
|
|
config.simulation.running_time = 200
|
|
config.mixnet.num_nodes = 100
|
|
config.mixnet.payload_size = 320
|
|
config.mixnet.message_interval = 10
|
|
config.mixnet.real_message_prob = 0.01
|
|
config.mixnet.real_message_prob_weights = []
|
|
config.mixnet.max_message_prep_time = 0
|
|
config.p2p.connection_density = 6
|
|
config.p2p.min_network_latency = 1
|
|
config.p2p.max_network_latency = 1
|
|
config.measurement.sim_time_per_second = 10
|
|
|
|
results = []
|
|
|
|
for p2p_type in [P2PConfig.TYPE_ONE_TO_ALL, P2PConfig.TYPE_GOSSIP]:
|
|
config.p2p.type = p2p_type
|
|
|
|
for num_mix_layers in [0, 1, 2, 3]:
|
|
config.mixnet.num_mix_layers = num_mix_layers
|
|
|
|
for cover_message_prob in [0.0, 0.1, 0.2, 0.3]:
|
|
config.mixnet.cover_message_prob = cover_message_prob
|
|
|
|
for mix_delay in [0]:
|
|
config.mixnet.min_mix_delay = mix_delay
|
|
config.mixnet.max_mix_delay = mix_delay
|
|
|
|
sim = Simulation(config)
|
|
sim.run()
|
|
|
|
analysis = Analysis(sim, config, show_plots=False)
|
|
precision, recall, f1_score = analysis.messages_emitted_around_interval()
|
|
print(
|
|
f"STARTING TIMING ATTACK: p2p_type:{p2p_type}, {num_mix_layers} layers, {cover_message_prob} cover, {mix_delay} delay")
|
|
timing_attack_df = analysis.timing_attack(analysis.message_hops())
|
|
|
|
results.append({
|
|
COL_P2P_TYPE: p2p_type,
|
|
COL_NUM_MIX_LAYERS: num_mix_layers,
|
|
COL_COVER_MESSAGE_PROB: cover_message_prob,
|
|
COL_MIX_DELAY: mix_delay,
|
|
COL_GLOBAL_PRECISION: precision,
|
|
COL_GLOBAL_RECALL: recall,
|
|
COL_GLOBAL_F1_SCORE: f1_score,
|
|
COL_TARGET_ACCURACY_MEDIAN: float(timing_attack_df.median().iloc[0]),
|
|
COL_TARGET_ACCURACY_STD: float(timing_attack_df.std().iloc[0]),
|
|
COL_TARGET_ACCURACY_MIN: float(timing_attack_df.min().iloc[0]),
|
|
COL_TARGET_ACCURACY_25p: float(timing_attack_df.quantile(0.25).iloc[0]),
|
|
COL_TARGET_ACCURACY_MEAN: float(timing_attack_df.mean().iloc[0]),
|
|
COL_TARGET_ACCURACY_75p: float(timing_attack_df.quantile(0.75).iloc[0]),
|
|
COL_TARGET_ACCURACY_MAX: float(timing_attack_df.max().iloc[0]),
|
|
})
|
|
|
|
df = pd.DataFrame(results)
|
|
df.to_csv(f"bulk-attack-{datetime.now().replace(microsecond=0).isoformat()}.csv", index=False)
|
|
plot_global_metrics(df)
|
|
plot_target_accuracy(df)
|
|
|
|
|
|
def plot_global_metrics(df: pd.DataFrame):
|
|
for p2p_type in df[COL_P2P_TYPE].unique():
|
|
# Plotting global precision, recall, and f1 score against different parameters
|
|
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 15))
|
|
|
|
# Precision plot
|
|
for cover_message_prob in df[COL_COVER_MESSAGE_PROB].unique():
|
|
subset = df[(df[COL_COVER_MESSAGE_PROB] == cover_message_prob) & (df[COL_P2P_TYPE] == p2p_type)]
|
|
axes[0].plot(subset[COL_NUM_MIX_LAYERS], subset[COL_GLOBAL_PRECISION],
|
|
label=f"{cover_message_prob} cover rate")
|
|
axes[0].set_title(f"Global Precision ({p2p_type})")
|
|
axes[0].set_xlabel("# of Mix Layers")
|
|
axes[0].set_ylabel("Global Precision (%)")
|
|
axes[0].set_ylim(0, 105)
|
|
axes[0].legend()
|
|
|
|
# Recall plot
|
|
for cover_message_prob in df[COL_COVER_MESSAGE_PROB].unique():
|
|
subset = df[(df[COL_COVER_MESSAGE_PROB] == cover_message_prob) & (df[COL_P2P_TYPE] == p2p_type)]
|
|
axes[1].plot(subset[COL_NUM_MIX_LAYERS], subset[COL_GLOBAL_RECALL],
|
|
label=f"{cover_message_prob} cover rate")
|
|
axes[1].set_title(f"Global Recall ({p2p_type})")
|
|
axes[1].set_xlabel("# of Mix Layers")
|
|
axes[1].set_ylabel("Global Recall (%)")
|
|
axes[1].set_ylim(0, 105)
|
|
axes[1].legend()
|
|
|
|
# F1 Score plot
|
|
for cover_message_prob in df[COL_COVER_MESSAGE_PROB].unique():
|
|
subset = df[(df[COL_COVER_MESSAGE_PROB] == cover_message_prob) & (df[COL_P2P_TYPE] == p2p_type)]
|
|
axes[2].plot(subset[COL_NUM_MIX_LAYERS], subset[COL_GLOBAL_F1_SCORE],
|
|
label=f"{cover_message_prob} cover rate")
|
|
axes[2].set_title(f"Global F1 Score ({p2p_type})")
|
|
axes[2].set_xlabel("# of Mix Layers")
|
|
axes[2].set_ylabel("Global F1 Score (%)")
|
|
axes[2].set_ylim(0, 105)
|
|
axes[2].legend()
|
|
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def plot_target_accuracy(df: pd.DataFrame):
|
|
for p2p_type in df[COL_P2P_TYPE].unique():
|
|
plt.figure(figsize=(12, 6))
|
|
for cover_message_prob in df[COL_COVER_MESSAGE_PROB].unique():
|
|
subset = df[(df[COL_COVER_MESSAGE_PROB] == cover_message_prob) & (df[COL_P2P_TYPE] == p2p_type)]
|
|
plt.plot(subset[COL_NUM_MIX_LAYERS], subset[COL_TARGET_ACCURACY_MEDIAN],
|
|
label=f"{cover_message_prob} cover rate")
|
|
plt.title(f"Timing Attack Accuracy ({p2p_type})")
|
|
plt.xlabel("# of Mix Layers")
|
|
plt.ylabel("Median of Accuracy (%)")
|
|
plt.ylim(0, 105)
|
|
plt.legend()
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
bulk_attack()
|