2024-05-31 23:17:10 +09:00

279 lines
11 KiB
Python

from collections import Counter
from typing import TYPE_CHECKING
import numpy as np
import pandas as pd
import seaborn
from matplotlib import pyplot as plt
import scipy.stats as stats
from adversary import NodeState
from config import Config
from simulation import Simulation
if TYPE_CHECKING:
from node import Node
class Analysis:
def __init__(self, sim: Simulation, config: Config):
self.sim = sim
self.config = config
def run(self):
message_size_df = self.message_size_distribution()
self.bandwidth(message_size_df)
self.messages_emitted_around_interval()
self.messages_in_node_over_time()
# self.node_states()
self.message_hops()
self.timing_attack()
def bandwidth(self, message_size_df: pd.DataFrame):
dataframes = []
nonzero_egresses = []
nonzero_ingresses = []
for egress_bandwidths, ingress_bandwidths in zip(self.sim.p2p.measurement.egress_bandwidth_per_time,
self.sim.p2p.measurement.ingress_bandwidth_per_time):
rows = []
for node in self.sim.p2p.nodes:
egress = egress_bandwidths[node] / 1024.0
ingress = ingress_bandwidths[node] / 1024.0
rows.append((node.id, egress, ingress))
if egress > 0:
nonzero_egresses.append(egress)
if ingress > 0:
nonzero_ingresses.append(ingress)
df = pd.DataFrame(rows, columns=["node_id", "egress", "ingress"])
dataframes.append(df)
times = range(len(dataframes))
df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, times)], ignore_index=True)
df = df.pivot(index="Time", columns="node_id", values=["egress", "ingress"])
plt.figure(figsize=(12, 6))
for column in df.columns:
marker = "x" if column[0] == "ingress" else "o"
plt.plot(df.index, df[column], marker=marker, label=column[0])
plt.title("Egress/ingress bandwidth of each node over time")
plt.xlabel("Time")
plt.ylabel("Bandwidth (KiB/s)")
plt.ylim(bottom=0)
# Customize the legend to show only 'egress' and 'ingress' regardless of node_id
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
plt.grid(True)
# Adding descriptions on the right size of the plot
egress_series = pd.Series(nonzero_egresses)
ingress_series = pd.Series(nonzero_ingresses)
desc = (
f"message: {message_size_df["message_size"].mean():.0f} bytes\n"
f"{self.config.description()}\n\n"
f"[egress(>0)]\nmean: {egress_series.mean():.2f} KiB/s\nmax: {egress_series.max():.2f} KiB/s\n\n"
f"[ingress(>0)]\nmean: {ingress_series.mean():.2f} KiB/s\nmax: {ingress_series.max():.2f} KiB/s"
)
plt.text(1.02, 0.5, desc, transform=plt.gca().transAxes, verticalalignment="center", fontsize=12)
plt.subplots_adjust(right=0.8) # Adjust layout to make room for the text
plt.show()
def message_size_distribution(self) -> pd.DataFrame:
df = pd.DataFrame(self.sim.p2p.adversary.message_sizes, columns=["message_size"])
print(df.describe())
return df
def messages_emitted_around_interval(self):
df = pd.DataFrame(
[(node.id, cnt, node.id < len(self.sim.config.mixnet.real_message_prob_weights))
for node, cnt in self.sim.p2p.adversary.senders_around_interval.items()],
columns=["node_id", "msg_count", "expected"]
)
plt.figure(figsize=(10, 6))
seaborn.barplot(data=df, x="node_id", y="msg_count", hue="expected", palette={True: "red", False: "blue"})
plt.title("Messages emitted around the promised interval")
plt.xlabel("Sender Node ID")
plt.ylabel("Msg Count")
plt.legend(title="expected")
plt.show()
def messages_in_node_over_time(self):
dataframes = []
for i, msgs_in_node in enumerate(self.sim.p2p.adversary.msgs_in_node_per_window):
time = i * self.config.adversary.io_window_moving_interval
df = pd.DataFrame(
[(time, node.id, msg_cnt, len(senders)) for node, (msg_cnt, senders) in msgs_in_node.items()],
columns=["time", "node_id", "msg_cnt", "sender_cnt"])
if not df.empty:
dataframes.append(df)
df = pd.concat(dataframes, ignore_index=True)
msg_cnt_df = df.pivot(index="time", columns="node_id", values="msg_cnt")
plt.figure(figsize=(12, 6))
for column in msg_cnt_df.columns:
plt.plot(msg_cnt_df.index, msg_cnt_df[column], marker=None, label=column)
plt.title("Messages within each node over time")
plt.xlabel("Time")
plt.ylabel("Msg Count")
plt.ylim(bottom=0)
plt.grid(True)
plt.tight_layout()
plt.show()
sender_cnt_df = df.pivot(index="time", columns="node_id", values="sender_cnt")
plt.figure(figsize=(12, 6))
for column in sender_cnt_df.columns:
plt.plot(sender_cnt_df.index, sender_cnt_df[column], marker=None, label=column)
plt.title("Diversity of senders of messages received by each node over time")
plt.xlabel("Time")
plt.ylabel("# of senders of messages received by each node")
plt.ylim(bottom=0)
plt.grid(True)
plt.tight_layout()
plt.show()
plt.figure(figsize=(12, 6))
df.boxplot(column="sender_cnt", by="time", medianprops={"color": "red", "linewidth": 2.5})
plt.title("Diversity of senders of messages received by each node over time")
plt.suptitle("")
plt.xticks([])
plt.xlabel("Time")
plt.ylabel("# of senders of messages received by each node")
plt.ylim(bottom=0)
plt.grid(axis="x")
plt.tight_layout()
plt.show()
def node_states(self):
rows = []
for time, node_states in self.sim.p2p.adversary.node_states.items():
for node, state in node_states.items():
rows.append((time, node.id, state))
df = pd.DataFrame(rows, columns=["time", "node_id", "state"])
plt.figure(figsize=(10, 6))
seaborn.scatterplot(data=df, x="time", y="node_id", hue="state",
palette={NodeState.SENDING: "red", NodeState.RECEIVING: "blue"})
plt.title("Node states over time")
plt.xlabel("Time")
plt.ylabel("Node ID")
plt.legend(title="state")
plt.show()
def message_hops(self):
df = pd.DataFrame(self.sim.p2p.measurement.message_hops.values(), columns=["hops"])
print(df.describe())
plt.figure(figsize=(6, 6))
seaborn.boxplot(data=df, y="hops", medianprops={"color": "red", "linewidth": 2.5})
plt.title("Message hops distribution")
plt.show()
def timing_attack(self):
"""
pick a random node received a message.
then, track back the message to the sender
until
- there is no message to track back within a reasonable time window
- enough hops have been traversed
"""
all_results = []
window = len(self.sim.p2p.adversary.msgs_in_node_per_window) - 1
while window >= 0:
items = self.sim.p2p.adversary.msgs_in_node_per_window[window].items()
actual_receivers = [node for node, (msg_cnt, senders) in items if len(senders) > 0]
if len(actual_receivers) == 0:
window -= 1
continue
results = []
max_hops = 0
for receiver in actual_receivers:
nodes_per_hop = self.timing_attack_with(receiver, window)
self.print_nodes_per_hop(nodes_per_hop, window)
results.append(nodes_per_hop)
max_hops = max(max_hops, len(nodes_per_hop))
window -= max_hops
all_results.extend(results)
suspected_senders = Counter()
for result in all_results:
print(Counter({node.id: count for node, count in result[-1].items()}))
suspected_senders.update(result[-1])
suspected_senders = ({node.id: count for node, count in suspected_senders.items()})
print(f"suspected nodes count: {len(suspected_senders)}")
# Extract keys and values from the Counter
keys = list(suspected_senders.keys())
values = list(suspected_senders.values())
# Create the bar plot
plt.figure(figsize=(12, 8))
plt.bar(keys, values)
plt.xlabel('Node ID')
plt.ylabel('Counts')
plt.title('Suspected Sender Counts')
plt.show()
# Create the bar plot for original sender counts
original_senders = ({node.id: count for node, count in self.sim.p2p.measurement.original_senders.items()})
plt.figure(figsize=(12, 8))
plt.bar(list(original_senders.keys()), list(original_senders.values()))
plt.xlabel('Node ID')
plt.ylabel('Counts')
plt.title('Original Sender Counts')
plt.show()
# Create the bar plot for original sender counts
broadcasters = ({node.id: count for node, count in self.sim.p2p.broadcasters.items()})
plt.figure(figsize=(12, 8))
plt.bar(list(broadcasters.keys()), list(broadcasters.values()))
plt.xlabel('Node ID')
plt.ylabel('Counts')
plt.title('Broadcasters')
plt.show()
# Calculate the mean and standard deviation of the counts
mean = np.mean(values)
std_dev = np.std(values)
# Plot the histogram of the values
plt.figure(figsize=(12, 8))
plt.hist(values, bins=30, density=True, alpha=0.6, color='g', label='Counts Histogram')
# Plot the normal distribution curve
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = stats.norm.pdf(x, mean, std_dev)
plt.plot(x, p, 'k', linewidth=2, label='Normal Distribution')
title = "Fit results: mean = %.2f, std_dev = %.2f" % (mean, std_dev)
plt.title(title)
plt.xlabel('Counts')
plt.ylabel('Density')
plt.legend()
plt.show()
def timing_attack_with(self, starting_node: "Node", starting_window: int):
_, senders = self.sim.p2p.adversary.msgs_in_node_per_window[starting_window][starting_node]
nodes_per_hop = [Counter(senders)]
if self.config.p2p.type == self.config.p2p.TYPE_ONE_TO_ALL:
MAX_HOPS = 1 + self.config.mixnet.num_mix_layers
else:
MAX_HOPS = (1 + self.config.mixnet.num_mix_layers) * 4
for window in range(starting_window - 1, 0, -1):
if len(nodes_per_hop) >= MAX_HOPS:
break
next_nodes = Counter()
for node in nodes_per_hop[-1]:
_, senders = self.sim.p2p.adversary.msgs_in_node_per_window[window][node]
next_nodes.update(senders)
if len(next_nodes) == 0:
break
nodes_per_hop.append(next_nodes)
return nodes_per_hop
@staticmethod
def print_nodes_per_hop(nodes_per_hop, starting_window: int):
for hop, nodes in enumerate(nodes_per_hop):
print(f"hop-{hop} from w-{starting_window}: {len(nodes)} nodes: {sorted([node.id for node in nodes])}")