/// This module defines the partial transaction structure. /// /// Partial transactions, as the name suggests, are transactions /// which on their own may not balance (i.e. \sum inputs != \sum outputs) use crate::{ balance::Balance, error::Error, note::{NoteCommitment, NoteWitness}, nullifier::{Nullifier, NullifierNonce, NullifierSecret}, partial_tx::PtxCommitment, }; use rand_core::RngCore; use risc0_groth16::{ProofJson, PublicInputsJson, Verifier}; use serde::{Deserialize, Serialize}; #[derive(Debug, Clone, Serialize, Deserialize)] pub struct Input { pub note_comm: NoteCommitment, pub nullifier: Nullifier, pub balance: Balance, } #[derive(Debug, Clone)] pub struct InputWitness { pub note: NoteWitness, pub nf_sk: NullifierSecret, pub nonce: NullifierNonce, } impl InputWitness { pub fn random(note: NoteWitness, mut rng: impl RngCore) -> Self { Self { note, nf_sk: NullifierSecret::random(&mut rng), nonce: NullifierNonce::random(&mut rng), } } } // as we don't have SNARKS hooked up yet, the witness will be our proof #[derive(Debug)] pub struct InputProof { input: InputWitness, ptx_comm: PtxCommitment, death_proof: ProofJson, } impl InputProof { fn clone_death_proof(&self) -> ProofJson { let bytes = bincode::serialize(&self.death_proof).unwrap(); bincode::deserialize(&bytes).unwrap() } } impl Input { pub fn from_witness(w: InputWitness) -> Self { Self { note_comm: w.note.commit(w.nf_sk.commit(), w.nonce), nullifier: Nullifier::new(w.nf_sk, w.nonce), balance: w.note.balance(), } } pub fn prove( &self, w: &InputWitness, ptx_comm: PtxCommitment, death_proof: ProofJson, ) -> Result { if bincode::serialize(&Input::from_witness(w.clone())).unwrap() != bincode::serialize(&self).unwrap() { Err(Error::ProofFailed) } else { Ok(InputProof { input: w.clone(), ptx_comm, death_proof, }) } } pub fn verify(&self, ptx_comm: PtxCommitment, proof: &InputProof) -> bool { // verification checks the relation // - nf_pk == hash(nf_sk) // - note_comm == commit(note || nf_pk) // - nullifier == hash(nf_sk || nonce) // - balance == v * hash_to_curve(Unit) + blinding * H // - ptx_comm is the same one that was used in proving. let witness = &proof.input; let nf_pk = witness.nf_sk.commit(); // let death_constraint_was_committed_to = // witness.note.death_constraint == bincode::serialize(&death_constraint).unwrap(); let death_constraint_is_satisfied: bool = Verifier::from_json( proof.clone_death_proof(), PublicInputsJson { values: vec![ptx_comm.hex()], }, bincode::deserialize(&witness.note.death_constraint).unwrap(), ) .unwrap() .verify() .is_ok(); self.note_comm == witness.note.commit(nf_pk, witness.nonce) && self.nullifier == Nullifier::new(witness.nf_sk, witness.nonce) && self.balance == witness.note.balance() && ptx_comm == proof.ptx_comm // && death_constraint_was_committed_to && death_constraint_is_satisfied } pub(crate) fn to_bytes(&self) -> [u8; 96] { let mut bytes = [0u8; 96]; bytes[..32].copy_from_slice(self.note_comm.as_bytes()); bytes[32..64].copy_from_slice(self.nullifier.as_bytes()); bytes[64..96].copy_from_slice(&self.balance.to_bytes()); bytes } } #[cfg(test)] mod test { use super::*; use crate::{nullifier::NullifierNonce, test_util::seed_rng}; #[test] fn test_input_proof() { let mut rng = seed_rng(0); let ptx_comm = PtxCommitment::default(); let note = NoteWitness::random(10, "NMO", &mut rng); let nf_sk = NullifierSecret::random(&mut rng); let nonce = NullifierNonce::random(&mut rng); let witness = InputWitness { note, nf_sk, nonce }; let input = Input::from_witness(witness.clone()); let proof = input.prove(&witness, ptx_comm).unwrap(); assert!(input.verify(ptx_comm, &proof)); let wrong_witnesses = [ InputWitness { note: NoteWitness::random(11, "NMO", &mut rng), ..witness.clone() }, InputWitness { note: NoteWitness::random(10, "ETH", &mut rng), ..witness.clone() }, InputWitness { nf_sk: NullifierSecret::random(&mut rng), ..witness.clone() }, InputWitness { nonce: NullifierNonce::random(&mut rng), ..witness.clone() }, ]; for wrong_witness in wrong_witnesses { assert!(input.prove(&wrong_witness, ptx_comm).is_err()); let wrong_input = Input::from_witness(wrong_witness.clone()); let wrong_proof = wrong_input.prove(&wrong_witness, ptx_comm).unwrap(); assert!(!input.verify(ptx_comm, &wrong_proof)); } } #[test] fn test_input_ptx_coupling() { let mut rng = seed_rng(0); let note = NoteWitness::random(10, "NMO", &mut rng); let nf_sk = NullifierSecret::random(&mut rng); let nonce = NullifierNonce::random(&mut rng); let witness = InputWitness { note, nf_sk, nonce }; let input = Input::from_witness(witness.clone()); let ptx_comm = PtxCommitment::random(&mut rng); let proof = input.prove(&witness, ptx_comm).unwrap(); assert!(input.verify(ptx_comm, &proof)); // The same input proof can not be used in another partial transaction. let another_ptx_comm = PtxCommitment::random(&mut rng); assert!(!input.verify(another_ptx_comm, &proof)); } }