import pandas as pd import seaborn from matplotlib import pyplot as plt from adversary import NodeState from config import Config from simulation import Simulation class Analysis: def __init__(self, sim: Simulation, config: Config): self.sim = sim self.config = config def run(self): message_size_df = self.message_size_distribution() self.bandwidth(message_size_df) self.messages_emitted_around_interval() if self.config.mixnet.is_mixing_on(): self.mixed_messages_per_node_over_time() self.node_states() def bandwidth(self, message_size_df: pd.DataFrame): dataframes = [] nonzero_ingresses = [] nonzero_egresses = [] for ingress_bandwidths, egress_bandwidths in zip(self.sim.p2p.measurement.ingress_bandwidth_per_time, self.sim.p2p.measurement.egress_bandwidth_per_time): rows = [] for node in self.sim.p2p.nodes: ingress = ingress_bandwidths[node] / 1024.0 egress = egress_bandwidths[node] / 1024.0 rows.append((node.id, ingress, egress)) if ingress > 0: nonzero_ingresses.append(ingress) if egress > 0: nonzero_egresses.append(egress) df = pd.DataFrame(rows, columns=["node_id", "ingress", "egress"]) dataframes.append(df) times = range(len(dataframes)) df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, times)], ignore_index=True) df = df.pivot(index="Time", columns="node_id", values=["ingress", "egress"]) plt.figure(figsize=(12, 6)) for column in df.columns: marker = "x" if column[0] == "ingress" else "o" plt.plot(df.index, df[column], marker=marker, label=column[0]) plt.title("Ingress/egress bandwidth of each node over time") plt.xlabel("Time") plt.ylabel("Bandwidth (KiB/s)") plt.ylim(bottom=0) # Customize the legend to show only 'ingress' and 'egress' regardless of node_id handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys()) plt.grid(True) # Adding descriptions on the right size of the plot ingress_series = pd.Series(nonzero_ingresses) egress_series = pd.Series(nonzero_egresses) desc = ( f"message: {message_size_df["message_size"].mean():.0f} bytes\n" f"{self.config.description()}\n\n" f"[ingress(>0)]\nmean: {ingress_series.mean():.2f} KiB/s\nmax: {ingress_series.max():.2f} KiB/s\n\n" f"[egress(>0)]\nmean: {egress_series.mean():.2f} KiB/s\nmax: {egress_series.max():.2f} KiB/s" ) plt.text(1.02, 0.5, desc, transform=plt.gca().transAxes, verticalalignment="center", fontsize=12) plt.subplots_adjust(right=0.8) # Adjust layout to make room for the text plt.show() def message_size_distribution(self) -> pd.DataFrame: df = pd.DataFrame(self.sim.p2p.adversary.message_sizes, columns=["message_size"]) print(df.describe()) return df def messages_emitted_around_interval(self): df = pd.DataFrame( [(node.id, cnt, node.id < len(self.sim.config.mixnet.real_message_prob_weights)) for node, cnt in self.sim.p2p.adversary.senders_around_interval.items()], columns=["node_id", "msg_count", "expected"] ) plt.figure(figsize=(10, 6)) seaborn.barplot(data=df, x="node_id", y="msg_count", hue="expected", palette={True: "red", False: "blue"}) plt.title("Messages emitted around the promised interval") plt.xlabel("Sender Node ID") plt.ylabel("Msg Count") plt.legend(title="expected") plt.show() def mixed_messages_per_node_over_time(self): dataframes = [] for mixed_msgs_per_node in self.sim.p2p.adversary.mixed_msgs_per_window: df = pd.DataFrame([(node.id, cnt) for node, cnt in mixed_msgs_per_node.items()], columns=["node_id", "msg_count"]) dataframes.append(df) observation_times = range(len(dataframes)) df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, observation_times)], ignore_index=True) df = df.pivot(index="Time", columns="node_id", values="msg_count") plt.figure(figsize=(12, 6)) for column in df.columns: plt.plot(df.index, df[column], marker="o", label=column) plt.title("Mixed messages in each mix over time") plt.xlabel("Time") plt.ylabel("Msg Count") plt.ylim(bottom=0) plt.legend(title="Node ID") plt.grid(True) plt.show() def node_states(self): rows = [] for time, node_states in self.sim.p2p.adversary.node_states.items(): for node, state in node_states.items(): rows.append((time, node.id, state)) df = pd.DataFrame(rows, columns=["time", "node_id", "state"]) plt.figure(figsize=(10, 6)) seaborn.scatterplot(data=df, x="time", y="node_id", hue="state", palette={NodeState.SENDING: "red", NodeState.RECEIVING: "blue"}) plt.title("Node states over time") plt.xlabel("Time") plt.ylabel("Node ID") plt.legend(title="state") plt.show()