mirror of
https://github.com/logos-blockchain/logos-blockchain-specs.git
synced 2026-01-15 11:33:12 +00:00
Fix roots computations
This commit is contained in:
parent
9bfe8c4f0f
commit
e54d535081
@ -12,10 +12,11 @@ G2 = G2Uncompressed
|
||||
|
||||
BYTES_PER_FIELD_ELEMENT = 32
|
||||
BLS_MODULUS = eth2spec.eip7594.mainnet.BLS_MODULUS
|
||||
PRIMITIVE_ROOT: int = 7
|
||||
GLOBAL_PARAMETERS: List[G1]
|
||||
GLOBAL_PARAMETERS_G2: List[G2]
|
||||
# secret is fixed but this should come from a different synchronization protocol
|
||||
GLOBAL_PARAMETERS, GLOBAL_PARAMETERS_G2 = map(list, generate_setup(4096, 8, 1987))
|
||||
ROOTS_OF_UNITY: Tuple[int] = compute_roots_of_unity(
|
||||
7, 4096, BLS_MODULUS
|
||||
PRIMITIVE_ROOT, 4096, BLS_MODULUS
|
||||
)
|
||||
|
||||
@ -3,13 +3,14 @@ from typing import List, Sequence
|
||||
from eth2spec.deneb.mainnet import KZGProof as Proof, BLSFieldElement
|
||||
from eth2spec.utils import bls
|
||||
|
||||
from da.kzg_rs.common import G1, BLS_MODULUS
|
||||
from da.kzg_rs.common import G1, BLS_MODULUS, PRIMITIVE_ROOT
|
||||
from da.kzg_rs.fft import fft, ifft, fft_g1, ifft_g1
|
||||
from da.kzg_rs.poly import Polynomial
|
||||
from da.kzg_rs.roots import compute_roots_of_unity
|
||||
from da.kzg_rs.utils import is_power_of_two
|
||||
|
||||
|
||||
def toeplitz1(global_parameters: List[G1], roots_of_unity: Sequence[int], polynomial_degree: int) -> List[G1]:
|
||||
def toeplitz1(global_parameters: List[G1], polynomial_degree: int) -> List[G1]:
|
||||
"""
|
||||
This part can be precomputed for different global_parameters lengths depending on polynomial degree of powers of two.
|
||||
:param global_parameters:
|
||||
@ -17,8 +18,8 @@ def toeplitz1(global_parameters: List[G1], roots_of_unity: Sequence[int], polyno
|
||||
:param polynomial_degree:
|
||||
:return:
|
||||
"""
|
||||
assert len(roots_of_unity) >= 2 * polynomial_degree
|
||||
assert len(global_parameters) >= polynomial_degree
|
||||
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree*2, BLS_MODULUS)
|
||||
global_parameters = global_parameters[:polynomial_degree]
|
||||
# algorithm only works on powers of 2 for dft computations
|
||||
assert is_power_of_two(len(global_parameters))
|
||||
@ -28,21 +29,22 @@ def toeplitz1(global_parameters: List[G1], roots_of_unity: Sequence[int], polyno
|
||||
return vector_x_extended_fft
|
||||
|
||||
|
||||
def toeplitz2(coefficients: List[G1], roots_of_unity: Sequence[int], extended_vector: Sequence[G1]) -> List[G1]:
|
||||
def toeplitz2(coefficients: List[G1], extended_vector: Sequence[G1]) -> List[G1]:
|
||||
assert is_power_of_two(len(coefficients))
|
||||
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(coefficients), BLS_MODULUS)
|
||||
toeplitz_coefficients_fft = fft(coefficients, roots_of_unity, BLS_MODULUS)
|
||||
return [bls.multiply(v, c) for v, c in zip(extended_vector, toeplitz_coefficients_fft)]
|
||||
|
||||
|
||||
def toeplitz3(h_extended_fft: Sequence[G1], roots_of_unity: Sequence[int], polynomial_degree: int) -> List[G1]:
|
||||
def toeplitz3(h_extended_fft: Sequence[G1], polynomial_degree: int) -> List[G1]:
|
||||
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, len(h_extended_fft), BLS_MODULUS)
|
||||
return ifft_g1(h_extended_fft, roots_of_unity, BLS_MODULUS)[:polynomial_degree]
|
||||
|
||||
|
||||
def fk20_generate_proofs(
|
||||
polynomial: Polynomial, global_parameters: List[G1], roots_of_unity: Sequence[int]
|
||||
polynomial: Polynomial, global_parameters: List[G1]
|
||||
) -> List[Proof]:
|
||||
polynomial_degree = len(polynomial)
|
||||
assert len(roots_of_unity) >= 2 * polynomial_degree
|
||||
assert len(global_parameters) >= polynomial_degree
|
||||
assert is_power_of_two(len(polynomial))
|
||||
|
||||
@ -50,16 +52,19 @@ def fk20_generate_proofs(
|
||||
# 1.1 y = dft([s^d-1, s^d-2, ..., s, 1, *[0 for _ in len(polynomial)]])
|
||||
# 1.2 z = dft([*[0 for _ in len(polynomial)], f1, f2, ..., fd])
|
||||
# 1.3 u = y * v * roots_of_unity(len(polynomial)*2)
|
||||
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, polynomial_degree, BLS_MODULUS)
|
||||
global_parameters = [*global_parameters[polynomial_degree-2::-1], bls.multiply(bls.Z1(), 0)]
|
||||
extended_vector = toeplitz1(global_parameters, roots_of_unity[:polynomial_degree*2], polynomial_degree)
|
||||
extended_vector = toeplitz1(global_parameters, polynomial_degree)
|
||||
# 2 - Build circulant matrix with the polynomial coefficients (reversed N..n, and padded)
|
||||
toeplitz_coefficients = [
|
||||
polynomial.coefficients[-1], *(0 for _ in range(polynomial_degree+1)), *polynomial.coefficients[1:-1]
|
||||
polynomial.coefficients[-1],
|
||||
*(BLSFieldElement(0) for _ in range(polynomial_degree+1)),
|
||||
*polynomial.coefficients[1:-1]
|
||||
]
|
||||
h_extended_vector = toeplitz2(toeplitz_coefficients, roots_of_unity[:len(extended_vector)], extended_vector)
|
||||
h_extended_vector = toeplitz2(toeplitz_coefficients, extended_vector)
|
||||
# 3 - Perform fft and nub the tail half as it is padding
|
||||
h_vector = toeplitz3(h_extended_vector, roots_of_unity[:len(h_extended_vector)], polynomial_degree)
|
||||
h_vector = toeplitz3(h_extended_vector, polynomial_degree)
|
||||
# 4 - proof are the dft of the h vector
|
||||
proofs = fft_g1(h_vector, roots_of_unity[:polynomial_degree], BLS_MODULUS)
|
||||
proofs = fft_g1(h_vector, roots_of_unity, BLS_MODULUS)
|
||||
proofs = [Proof(bls.G1_to_bytes48(proof)) for proof in proofs]
|
||||
return proofs
|
||||
|
||||
@ -3,7 +3,7 @@ from unittest import TestCase
|
||||
import random
|
||||
from .fk20 import fk20_generate_proofs
|
||||
from .kzg import generate_element_proof, bytes_to_polynomial
|
||||
from .common import BLS_MODULUS, BYTES_PER_FIELD_ELEMENT, GLOBAL_PARAMETERS
|
||||
from .common import BLS_MODULUS, BYTES_PER_FIELD_ELEMENT, GLOBAL_PARAMETERS, PRIMITIVE_ROOT
|
||||
from .roots import compute_roots_of_unity
|
||||
|
||||
|
||||
@ -19,11 +19,11 @@ class TestFK20(TestCase):
|
||||
|
||||
def test_fk20(self):
|
||||
for size in [16, 32, 64, 128]:
|
||||
roots_of_unity = compute_roots_of_unity(2, size*2, BLS_MODULUS)
|
||||
roots_of_unity = compute_roots_of_unity(PRIMITIVE_ROOT, size*2, BLS_MODULUS)
|
||||
rand_bytes = self.rand_bytes(size)
|
||||
polynomial = bytes_to_polynomial(rand_bytes)
|
||||
proofs = [generate_element_proof(i, polynomial, GLOBAL_PARAMETERS, roots_of_unity) for i in range(size)]
|
||||
fk20_proofs = fk20_generate_proofs(polynomial, GLOBAL_PARAMETERS, roots_of_unity)
|
||||
fk20_proofs = fk20_generate_proofs(polynomial, GLOBAL_PARAMETERS)
|
||||
self.assertEqual(len(proofs), len(fk20_proofs))
|
||||
self.assertEqual(proofs, fk20_proofs)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user