mirror of
https://github.com/logos-blockchain/logos-blockchain-specs.git
synced 2026-01-02 13:13:06 +00:00
feat: Implement subnetworks assignations algorithm (#130)
* Implement subnetworks assignations algorithm with tests * Remove main block * Make shrinking work * Fix tests, add random increasing decreasing test * Adapt docs * Reorg functions * Cleanup * Typos * Add randomness to balance subnetworks * Fit tests and adapt documentation * Define shuffling * Naming fixed * Raise error on too small network
This commit is contained in:
parent
89dd2efacb
commit
c763d47339
0
da/assignations/__init__.py
Normal file
0
da/assignations/__init__.py
Normal file
198
da/assignations/refill.py
Normal file
198
da/assignations/refill.py
Normal file
@ -0,0 +1,198 @@
|
||||
import contextlib
|
||||
import random
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Set, TypeAlias, Sequence, Any
|
||||
from itertools import chain
|
||||
from collections import Counter
|
||||
from heapq import heappush, heappop, heapify
|
||||
|
||||
|
||||
DeclarationId: TypeAlias = bytes
|
||||
Assignations: TypeAlias = List[Set[DeclarationId]]
|
||||
BlakeRng: TypeAlias = Any
|
||||
|
||||
|
||||
@dataclass(order=True)
|
||||
class Participant:
|
||||
# Participant's wrapper class
|
||||
# Used for keeping ordering in the heap by the participation first and the declaration id second
|
||||
participation: int # prioritize participation count first
|
||||
declaration_id: DeclarationId # sort by id on default
|
||||
|
||||
|
||||
@dataclass
|
||||
class Subnetwork:
|
||||
# Subnetwork wrapper that keeps the subnetwork id [0..2048) and the set of participants in that subnetwork
|
||||
participants: Set[DeclarationId]
|
||||
subnetwork_id: int
|
||||
|
||||
def __lt__(self, other):
|
||||
return (len(self), self.subnetwork_id) < (len(other), other.subnetwork_id)
|
||||
|
||||
def __gt__(self, other):
|
||||
return (len(self), self.subnetwork_id) > (len(other), other.subnetwork_id)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.participants)
|
||||
|
||||
|
||||
def subnetworks_filled_up_to_replication_factor(subnetworks: Sequence[Subnetwork], replication_factor: int) -> bool:
|
||||
return all(len(subnetwork) >= replication_factor for subnetwork in subnetworks)
|
||||
|
||||
|
||||
def all_nodes_assigned(participants: Sequence[Participant], average_participation: int) -> bool:
|
||||
return all(participant.participation >= average_participation for participant in participants)
|
||||
|
||||
|
||||
def heappop_next_for_subnetwork(subnetwork: Subnetwork, participants: List[Participant]) -> Participant:
|
||||
poped = []
|
||||
participant = heappop(participants)
|
||||
while participant.declaration_id in subnetwork.participants:
|
||||
poped.append(participant)
|
||||
participant = heappop(participants)
|
||||
for poped in poped:
|
||||
heappush(participants, poped)
|
||||
return participant
|
||||
|
||||
# sample using fisher yates shuffling, returning
|
||||
def sample(elements: Sequence[Any], random: BlakeRng, k: int) -> List[Any]:
|
||||
# list is sorted for reproducibility
|
||||
elements = sorted(elements)
|
||||
# pythons built-in is fisher yates shuffling
|
||||
random.shuffle(elements)
|
||||
return elements[:k]
|
||||
|
||||
|
||||
def fill_subnetworks(
|
||||
available_nodes: List[Participant],
|
||||
subnetworks: List[Subnetwork],
|
||||
average_participation: int,
|
||||
replication_factor: int,
|
||||
):
|
||||
heapify(available_nodes)
|
||||
heapify(subnetworks)
|
||||
|
||||
while not (
|
||||
subnetworks_filled_up_to_replication_factor(subnetworks, replication_factor) and
|
||||
all_nodes_assigned(available_nodes, average_participation)
|
||||
):
|
||||
# take the fewest participants subnetwork
|
||||
subnetwork = heappop(subnetworks)
|
||||
|
||||
# take the declaration with the lowest participation that is not included in the subnetwork
|
||||
participant = heappop_next_for_subnetwork(subnetwork, available_nodes)
|
||||
|
||||
# fill into subnetwork
|
||||
subnetwork.participants.add(participant.declaration_id)
|
||||
participant.participation += 1
|
||||
# push to heaps
|
||||
heappush(available_nodes, participant)
|
||||
heappush(subnetworks, subnetwork)
|
||||
|
||||
|
||||
def balance_subnetworks_shrink(
|
||||
subnetworks: List[Subnetwork],
|
||||
random: BlakeRng,
|
||||
):
|
||||
while (len(max(subnetworks)) - len(min(subnetworks))) > 1:
|
||||
max_subnetwork = max(subnetworks)
|
||||
min_subnetwork = min(subnetworks)
|
||||
diff_count = (len(max_subnetwork.participants) - len(min_subnetwork.participants)) // 2
|
||||
diff_participants = sorted(max_subnetwork.participants - min_subnetwork.participants)
|
||||
for participant in sample(diff_participants, random, k=diff_count):
|
||||
min_subnetwork.participants.add(participant)
|
||||
max_subnetwork.participants.remove(participant)
|
||||
|
||||
|
||||
def balance_subnetworks_grow(
|
||||
subnetworks: List[Subnetwork],
|
||||
participants: List[Participant],
|
||||
average_participation: int,
|
||||
random: BlakeRng,
|
||||
):
|
||||
for participant in filter(lambda x: x.participation > average_participation, sorted(participants)):
|
||||
for subnework in sample(
|
||||
sorted(filter(lambda subnetwork: participant.declaration_id in subnetwork.participants, subnetworks)),
|
||||
random,
|
||||
k=participant.participation - average_participation
|
||||
):
|
||||
subnework.participants.remove(participant.declaration_id)
|
||||
participant.participation -= 1
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def rand(seed: bytes):
|
||||
prev_rand = random.getstate()
|
||||
random.seed(seed)
|
||||
yield random
|
||||
random.setstate(prev_rand)
|
||||
|
||||
|
||||
def calculate_subnetwork_assignations(
|
||||
new_nodes_list: Sequence[DeclarationId],
|
||||
previous_subnets: Assignations,
|
||||
replication_factor: int,
|
||||
random_seed: bytes,
|
||||
) -> Assignations:
|
||||
if len(new_nodes_list) < replication_factor:
|
||||
raise ValueError("The network size is smaller than the replication factor")
|
||||
# The algorithm works as follows:
|
||||
# 1. Remove nodes that are not active from the previous subnetworks assignations
|
||||
# 2. If the network is decreasing (less available nodes than previous nodes), balance subnetworks:
|
||||
# 1) Until the biggest subnetwork and the smallest subnetwork size difference is <= 1
|
||||
# 2) Pick the biggest subnetwork and migrate a random half of the node difference to the smallest subnetwork,
|
||||
# randomly choosing them.
|
||||
# 3. If the network is increasing (more available nodes than previous nodes), balance subnetworks:
|
||||
# 1) For each (sorted) participant, remove the participant from random subnetworks (coming from sorted list)
|
||||
# until the participation of is equal to the average participation.
|
||||
# 4. Create a heap with the set of active nodes ordered by, primary the number of subnetworks each participant is at
|
||||
# and secondary by the DeclarationId of the participant (ascending order).
|
||||
# 5. Create a heap with the subnetworks ordered by the number of participants in each subnetwork
|
||||
# 6. Until all subnetworks are filled up to a replication factor and all nodes are assigned:
|
||||
# 1) pop the subnetwork with the fewest participants
|
||||
# 2) pop the participant with less participation
|
||||
# 3) push the participant into the subnetwork and increment its participation count
|
||||
# 4) push the participant and the subnetwork into the respective heaps
|
||||
# 7. Return the subnetworks ordered by its subnetwork id
|
||||
|
||||
# initialize randomness
|
||||
with rand(random_seed) as random:
|
||||
# average participation per node
|
||||
average_participation = max((len(previous_subnets) * replication_factor) // len(new_nodes_list), 1)
|
||||
|
||||
# prepare sets
|
||||
previous_nodes = set(chain.from_iterable(previous_subnets))
|
||||
new_nodes = set(new_nodes_list)
|
||||
unavailable_nodes = previous_nodes - new_nodes
|
||||
|
||||
# remove unavailable nodes
|
||||
active_assignations = [subnet - unavailable_nodes for subnet in previous_subnets]
|
||||
|
||||
# count participation per assigned node
|
||||
assigned_count: Counter[DeclarationId] = Counter(chain.from_iterable(active_assignations))
|
||||
|
||||
# available nodes heap
|
||||
available_nodes = [
|
||||
Participant(participation=assigned_count.get(_id, 0), declaration_id=_id) for _id in new_nodes
|
||||
]
|
||||
|
||||
# subnetworks heap
|
||||
subnetworks = list(
|
||||
Subnetwork(participants=subnet, subnetwork_id=subnetwork_id)
|
||||
for subnetwork_id, subnet in enumerate(active_assignations)
|
||||
)
|
||||
|
||||
# when shrinking, the network diversifies nodes in major subnetworks into emptier ones
|
||||
if len(previous_nodes) > len(new_nodes):
|
||||
balance_subnetworks_shrink(subnetworks, random)
|
||||
# when growing, reduce the participation of older nodes to fit with the expected
|
||||
else:
|
||||
balance_subnetworks_grow(subnetworks, available_nodes, average_participation, random)
|
||||
|
||||
|
||||
|
||||
# this method mutates the subnetworks
|
||||
fill_subnetworks(available_nodes, subnetworks, average_participation, replication_factor)
|
||||
|
||||
return [subnetwork.participants for subnetwork in sorted(subnetworks, key=lambda x: x.subnetwork_id)]
|
||||
|
||||
110
da/assignations/test_refill.py
Normal file
110
da/assignations/test_refill.py
Normal file
@ -0,0 +1,110 @@
|
||||
import random
|
||||
from itertools import chain
|
||||
from typing import List, Counter
|
||||
from unittest import TestCase
|
||||
from da.assignations.refill import calculate_subnetwork_assignations, Assignations, DeclarationId
|
||||
|
||||
|
||||
class TestRefill(TestCase):
|
||||
def test_single_with(self, subnetworks_size = 2048, replication_factor: int = 3, network_size: int = 100):
|
||||
random_seed = random.randbytes(32)
|
||||
nodes = [random.randbytes(32) for _ in range(network_size)]
|
||||
previous_nodes = [set() for _ in range(subnetworks_size)]
|
||||
assignations = calculate_subnetwork_assignations(nodes, previous_nodes, replication_factor, random_seed)
|
||||
self.assert_assignations(assignations, nodes, replication_factor)
|
||||
|
||||
def test_single_network_sizes(self):
|
||||
for i in [500, 1000, 10000, 100000]:
|
||||
with self.subTest(i):
|
||||
self.test_single_with(network_size=i)
|
||||
|
||||
def test_evolving_increasing_network(self):
|
||||
random_seed = random.randbytes(32)
|
||||
network_size = 100
|
||||
replication_factor = 3
|
||||
nodes = [random.randbytes(32) for _ in range(network_size)]
|
||||
assignations = [set() for _ in range(2048)]
|
||||
assignations = calculate_subnetwork_assignations(nodes, assignations, replication_factor, random_seed)
|
||||
new_nodes = nodes
|
||||
for network_size in [300, 500, 1000, 10000, 100000]:
|
||||
random_seed = random.randbytes(32)
|
||||
new_nodes = self.expand_nodes(new_nodes, network_size - len(nodes))
|
||||
self.mutate_nodes(new_nodes, network_size//3)
|
||||
assignations = calculate_subnetwork_assignations(new_nodes, assignations, replication_factor, random_seed)
|
||||
self.assert_assignations(assignations, new_nodes, replication_factor)
|
||||
|
||||
def test_evolving_decreasing_network(self):
|
||||
random_seed = random.randbytes(32)
|
||||
network_size = 100000
|
||||
replication_factor = 3
|
||||
nodes = [random.randbytes(32) for _ in range(network_size)]
|
||||
assignations = [set() for _ in range(2048)]
|
||||
assignations = calculate_subnetwork_assignations(nodes, assignations, replication_factor, random_seed)
|
||||
new_nodes = nodes
|
||||
for network_size in reversed([100, 300, 500, 1000, 10000]):
|
||||
random_seed = random.randbytes(32)
|
||||
new_nodes = self.shrink_nodes(new_nodes, network_size)
|
||||
self.mutate_nodes(new_nodes, network_size//3)
|
||||
assignations = calculate_subnetwork_assignations(new_nodes, assignations, replication_factor, random_seed)
|
||||
self.assert_assignations(assignations, new_nodes, replication_factor)
|
||||
|
||||
|
||||
def test_random_increase_decrease_network(self):
|
||||
random_seed = random.randbytes(32)
|
||||
network_size = 10000
|
||||
replication_factor = 3
|
||||
nodes = [random.randbytes(32) for _ in range(network_size)]
|
||||
assignations = [set() for _ in range(2048)]
|
||||
assignations = calculate_subnetwork_assignations(nodes, assignations, replication_factor, random_seed)
|
||||
new_nodes = nodes
|
||||
for step in (random.randrange(100, 1000) for _ in range(100)):
|
||||
random_seed = random.randbytes(32)
|
||||
if bool(random.choice((0, 1))):
|
||||
network_size += step
|
||||
new_nodes = self.expand_nodes(new_nodes, network_size)
|
||||
else:
|
||||
network_size -= step
|
||||
new_nodes = self.shrink_nodes(new_nodes, network_size)
|
||||
self.mutate_nodes(new_nodes, network_size//3)
|
||||
assignations = calculate_subnetwork_assignations(new_nodes, assignations, replication_factor, random_seed)
|
||||
self.assert_assignations(assignations, new_nodes, replication_factor)
|
||||
|
||||
|
||||
@classmethod
|
||||
def mutate_nodes(cls, nodes: List[DeclarationId], count: int):
|
||||
assert count < len(nodes)
|
||||
for i in random.choices(list(range(len(nodes))), k=count):
|
||||
nodes[i] = random.randbytes(32)
|
||||
|
||||
@classmethod
|
||||
def expand_nodes(cls, nodes: List[DeclarationId], count: int) -> List[DeclarationId]:
|
||||
return [*nodes, *(random.randbytes(32) for _ in range(count))]
|
||||
|
||||
@classmethod
|
||||
def shrink_nodes(cls, nodes: List[DeclarationId], count: int) -> List[DeclarationId]:
|
||||
return list(random.sample(nodes, k=count))
|
||||
|
||||
|
||||
def assert_assignations(self, assignations: Assignations, nodes: List[DeclarationId], replication_factor: int):
|
||||
self.assertEqual(
|
||||
len(set(chain.from_iterable(assignations))),
|
||||
len(nodes),
|
||||
"Only active nodes should be assigned"
|
||||
)
|
||||
self.assertTrue(
|
||||
all(len(assignation) >= replication_factor for assignation in assignations),
|
||||
f"No subnetworks should have less than {replication_factor} nodes"
|
||||
)
|
||||
self.assertAlmostEqual(
|
||||
max(map(len, assignations)),
|
||||
min(map(len, assignations)),
|
||||
msg="Subnetwork size variant should not be bigger than 1",
|
||||
delta=1
|
||||
)
|
||||
self.assertAlmostEqual(
|
||||
len(set(Counter(chain.from_iterable(assignations)).values())),
|
||||
1,
|
||||
msg="Nodes should be assigned uniformly to subnetworks",
|
||||
delta=1,
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user