Finish implementing fk20

This commit is contained in:
danielsanchezq 2024-06-10 18:22:54 +02:00
parent cdc6af668f
commit a3b501cbcb

View File

@ -23,25 +23,41 @@ def toeplitz1(global_parameters: List[G1], roots_of_unity: Sequence[int], polyno
assert is_power_of_two(len(global_parameters))
roots_of_unity = roots_of_unity[:2*polynomial_degree]
vector_x_extended = global_parameters + [G1(0) for _ in range(len(global_parameters))]
vector_x_extended_fft = fft(vector_x_extended, BLS_MODULUS, roots_of_unity)
vector_x_extended_fft = fft(vector_x_extended, roots_of_unity, BLS_MODULUS)
return vector_x_extended_fft
def toeplitz2(coefficients: List[G1], roots_of_unity: Sequence[int], extended_vector: Sequence[G1]) -> List[G1]:
assert is_power_of_two(len(coefficients))
toeplitz_coefficients_fft = fft(coefficients, BLS_MODULUS, roots_of_unity)
toeplitz_coefficients_fft = fft(coefficients, roots_of_unity, BLS_MODULUS)
return [v*c for v, c in zip(extended_vector, toeplitz_coefficients_fft)]
def toeplitz3(h_extended_fft: Sequence[G1], roots_of_unity: Sequence[int]) -> List[G1]:
return ifft(h_extended_fft, BLS_MODULUS, roots_of_unity)
def toeplitz3(h_extended_fft: Sequence[G1], roots_of_unity: Sequence[int], polynomial_degree: int) -> List[G1]:
return ifft(h_extended_fft, roots_of_unity, BLS_MODULUS)[:polynomial_degree]
def fk20_generate_proofs(polynomial: Polynomial) -> List[Proof]:
def fk20_generate_proofs(
polynomial: Polynomial, global_parameters: List[G1], roots_of_unity: Sequence[int]
) -> List[Proof]:
polynomial_degree = len(polynomial)
assert len(roots_of_unity) >= 2 * polynomial_degree
assert len(global_parameters) >= polynomial_degree
assert is_power_of_two(len(polynomial))
# 1 - Build toeplitz matrix for h values
# 1.1 y = dft([s^d-1, s^d-2, ..., s, 1, *[0 for _ in len(polynomial)]])
# 1.2 z = dft([*[0 for _ in len(polynomial)], f1, f2, ..., fd])
# 1.3 u = y * v * roots_of_unity(len(polynomial)*2)
global_parameters = [*global_parameters[polynomial_degree-2::-1], 0]
extended_vector = toeplitz1(global_parameters, roots_of_unity[:polynomial_degree*2], polynomial_degree)
# 2 - Build circulant matrix with the polynomial coefficients (reversed N..n, and padded)
toeplitz_coefficients = [
polynomial.coefficients[-1], *(0 for _ in range(polynomial_degree+1)), *polynomial.coefficients[1:-1]
]
h_extended_vector = toeplitz2(toeplitz_coefficients, roots_of_unity[:len(extended_vector)], extended_vector)
# 3 - Perform fft and nub the tail half as it is padding
pass
h_vector = toeplitz3(h_extended_vector, roots_of_unity[:len(h_extended_vector)], polynomial_degree)
# 4 - proof are the dft of the h vector
proofs = fft(h_vector, roots_of_unity[:polynomial_degree], BLS_MODULUS)
return proofs