mirror of
https://github.com/logos-blockchain/logos-blockchain-specs.git
synced 2026-01-07 23:53:11 +00:00
Implement subnetworks assignations algorithm with tests
This commit is contained in:
parent
89dd2efacb
commit
2e247d65f4
0
da/assignations/__init__.py
Normal file
0
da/assignations/__init__.py
Normal file
127
da/assignations/refill.py
Normal file
127
da/assignations/refill.py
Normal file
@ -0,0 +1,127 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Set, TypeAlias, Sequence
|
||||
from itertools import cycle, chain
|
||||
from collections import Counter
|
||||
from heapq import heappush, heappop, heapify
|
||||
|
||||
DeclarationId: TypeAlias = bytes
|
||||
Assignations: TypeAlias = List[Set[DeclarationId]]
|
||||
|
||||
@dataclass(order=True)
|
||||
class Participant:
|
||||
# Participants wrapper class
|
||||
# Used for keeping ordering in the heap by the participation first and the declaration id second
|
||||
participation: int # prioritize participation count first
|
||||
declaration_id: DeclarationId # sort by id on default
|
||||
|
||||
@dataclass
|
||||
class Subnetwork:
|
||||
# Subnetwork wrapper that keeps the subnetwork id [0..2048) and the set of participants in that subnetwork
|
||||
participants: Set[DeclarationId]
|
||||
subnetwork_id: int
|
||||
|
||||
def __lt__(self, other):
|
||||
return len(self) < len(other)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.participants)
|
||||
|
||||
|
||||
|
||||
def are_subnetworks_filled_up_to_replication_factor(subnetworks: Sequence[Subnetwork], replication_factor: int) -> bool:
|
||||
return all(len(subnetwork) >= replication_factor for subnetwork in subnetworks)
|
||||
|
||||
def all_nodes_are_assigned(participants: Sequence[Participant]) -> bool:
|
||||
return all(participant.participation > 0 for participant in participants)
|
||||
|
||||
|
||||
def heappop_next_for_participant(subnetworks: List[Subnetwork], participant: Participant) -> Subnetwork:
|
||||
filtered = [subnetwork for subnetwork in subnetworks if participant.declaration_id not in subnetwork.participants]
|
||||
poped = heappop(filtered)
|
||||
subnetworks.remove(poped)
|
||||
heapify(subnetworks)
|
||||
return poped
|
||||
|
||||
def calculate_subnetwork_assignations(
|
||||
new_nodes_list: Sequence[DeclarationId],
|
||||
previous_subnets: Assignations,
|
||||
replication_factor: int
|
||||
) -> Assignations:
|
||||
# The algorithm works as follows:
|
||||
# 1. Remove nodes that are not active from the previous subnetworks assignations
|
||||
# 2. Create a heap with the set of active nodes ordered by, primary the number of subnetworks each participant is at
|
||||
# and secondary by the DeclarationId of the participant (ascending order).
|
||||
# 3. Create a heap with the subnetworks ordered by the number of participants in each subnetwork
|
||||
# 4. Until all subnetworks are filled up to replication factor and all nodes are assigned:
|
||||
# 1) pop the subnetwork with the least participants
|
||||
# 2) pop the participant with less participations
|
||||
# 3) push the participant into the subnetwork and increment its participation count
|
||||
# 4) push the participant and the subnetwork into the respective heaps
|
||||
# 5. Return the subnetworks ordered by its subnetwork id
|
||||
|
||||
# prepare sets
|
||||
previous_nodes = set(chain.from_iterable(previous_subnets))
|
||||
new_nodes = set(new_nodes_list)
|
||||
unavailable_nodes = previous_nodes - new_nodes
|
||||
|
||||
# remove unavailable nodes
|
||||
active_assignations = [subnet - unavailable_nodes for subnet in previous_subnets]
|
||||
|
||||
# count participation per assigned node
|
||||
assigned_count: Counter[DeclarationId] = Counter(chain.from_iterable(active_assignations))
|
||||
|
||||
# available nodes heap
|
||||
available_nodes = [
|
||||
Participant(participation=assigned_count.get(_id, 0), declaration_id=_id) for _id in new_nodes
|
||||
]
|
||||
heapify(available_nodes)
|
||||
|
||||
# subnetworks heap
|
||||
subnetworks = list(
|
||||
Subnetwork(participants=subnet, subnetwork_id=subnetwork_id)
|
||||
for subnetwork_id, subnet in enumerate(active_assignations)
|
||||
)
|
||||
heapify(subnetworks)
|
||||
|
||||
|
||||
while not (
|
||||
are_subnetworks_filled_up_to_replication_factor(subnetworks, replication_factor) and
|
||||
all_nodes_are_assigned(available_nodes)
|
||||
):
|
||||
# take less participations declaration
|
||||
participant = heappop(available_nodes)
|
||||
|
||||
# take less participants subnetwork
|
||||
subnetwork = heappop(subnetworks)
|
||||
|
||||
# fill into subnetwork
|
||||
subnetwork.participants.add(participant.declaration_id)
|
||||
participant.participation += 1
|
||||
# push to queues
|
||||
heappush(available_nodes, participant)
|
||||
heappush(subnetworks, subnetwork)
|
||||
return [subnetwork.participants for subnetwork in sorted(subnetworks, key=lambda x: x.subnetwork_id)]
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import random
|
||||
number_of_columns = 4096
|
||||
for size in [100, 500, 1000, 10000]:
|
||||
nodes_ids = [random.randbytes(32) for _ in range(size)]
|
||||
replication_factor = 3
|
||||
print(size, replication_factor)
|
||||
# print(a := calculate_subnets(nodes_ids, number_of_columns, replication_factor))
|
||||
from pprint import pprint
|
||||
b = calculate_subnetwork_assignations(nodes_ids, [set() for _ in range(number_of_columns)], replication_factor)
|
||||
# pprint(b)
|
||||
assert len(set(chain.from_iterable(b))) == len(nodes_ids)
|
||||
# fill up new nodes
|
||||
for i in range(0, size, 5):
|
||||
nodes_ids[i] = random.randbytes(32)
|
||||
b = calculate_subnetwork_assignations(nodes_ids, b, replication_factor)
|
||||
# pprint(b)
|
||||
assert len(set(chain.from_iterable(b))) == len(nodes_ids), f"{len(set(chain.from_iterable(b)))} != {len(nodes_ids)}"
|
||||
print(Counter(chain.from_iterable(b)).values())
|
||||
|
||||
59
da/assignations/test_refill.py
Normal file
59
da/assignations/test_refill.py
Normal file
@ -0,0 +1,59 @@
|
||||
import random
|
||||
from itertools import chain
|
||||
from typing import List
|
||||
from unittest import TestCase
|
||||
from da.assignations.refill import calculate_subnetwork_assignations, Assignations, DeclarationId
|
||||
|
||||
|
||||
class TestRefill(TestCase):
|
||||
def test_single_with(self, subnetworks_size = 2048, replication_factor: int = 3, network_size: int = 100):
|
||||
nodes = [random.randbytes(32) for _ in range(network_size)]
|
||||
previous_nodes = [set() for _ in range(subnetworks_size)]
|
||||
assignations = calculate_subnetwork_assignations(nodes, previous_nodes, replication_factor)
|
||||
self.assert_assignations(assignations, nodes, replication_factor)
|
||||
|
||||
def test_single_network_sizes(self):
|
||||
for i in [500, 1000, 10000, 100000]:
|
||||
with self.subTest(i):
|
||||
self.test_single_with(network_size=i)
|
||||
|
||||
def test_same_sized_evolving_network(self):
|
||||
network_size = 100
|
||||
replication_factor = 3
|
||||
nodes = [random.randbytes(32) for _ in range(network_size)]
|
||||
assignations = [set() for _ in range(network_size)]
|
||||
assignations = calculate_subnetwork_assignations(nodes, assignations, replication_factor)
|
||||
for network_size in [300, 500, 1000, 10000, 100000]:
|
||||
new_nodes = self.expand_nodes(nodes, network_size)
|
||||
self.mutate_nodes(new_nodes, network_size//3)
|
||||
assignations = calculate_subnetwork_assignations(new_nodes, assignations, replication_factor)
|
||||
self.assert_assignations(assignations, new_nodes, replication_factor)
|
||||
|
||||
@classmethod
|
||||
def mutate_nodes(cls, nodes: List[DeclarationId], count: int):
|
||||
assert count < len(nodes)
|
||||
for i in random.choices(list(range(len(nodes))), k=count):
|
||||
nodes[i] = random.randbytes(32)
|
||||
|
||||
@classmethod
|
||||
def expand_nodes(cls, nodes: List[DeclarationId], count: int) -> List[DeclarationId]:
|
||||
return [*nodes, *(random.randbytes(32) for _ in range(count))]
|
||||
|
||||
|
||||
def assert_assignations(self, assignations: Assignations, nodes: List[DeclarationId], replication_factor: int):
|
||||
self.assertEqual(
|
||||
len(set(chain.from_iterable(assignations))),
|
||||
len(nodes),
|
||||
"Only active nodes should be assigned"
|
||||
)
|
||||
self.assertTrue(
|
||||
all(len(assignation) >= replication_factor for assignation in assignations),
|
||||
f"No subnetworks should have less than {replication_factor} nodes"
|
||||
)
|
||||
self.assertAlmostEqual(
|
||||
max(map(len, assignations)),
|
||||
min(map(len, assignations)),
|
||||
msg="Subnetwork size variant should not be bigger than 1",
|
||||
delta=1
|
||||
)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user