Add tree implementation explanation

This commit is contained in:
danielsanchezq 2023-06-30 11:17:17 +02:00
parent 9afb8fb4dc
commit 22985c551f

View File

@ -6,6 +6,29 @@ import random
class CarnotTree:
"""
This balanced binary tree implementation uses a combination of indexes and keys to easily calculate parenting
committee relationships. It also has caching on different kind of access to conveniently retrieve the committees
based on:
* Member of a committee
* Committee id (hash)
It is composed of `inner_committees`, an array that matches a binary tree node distribution:
0, 1, 2, 3..
[c0, c1, c2, c3 ]
where `cX` is the committee id (hash of the set with the committee members ids)
The number of leafs in the committee is calculated with:
total_leafs = (len(inner_committees) + 1) // 2
Parenting relation can be calculated for a committee index (idx) with:
parent_committee_idx = committee_idx // 2 - 1
Children relation is calculated with those indexes (idx) as well:
left_child, right_child = (committee_idx*2 + 1, committee_idx*2 + 2)
Then we have some dictionaries/maps that matches different information to those indexes:
* `membership_committees`: matches committee id (hash) to the actual committee set of participants
* `committee_id_to_index`: matches committee id (hash) to committee index (idx) in `inner_committees`
* `committee_by_member`: matches member id to the committee id that is a member from
"""
def __init__(self, nodes: List[Id], number_of_committees: int):
# useless to build an overlay with no committees
assert number_of_committees > 0
@ -19,7 +42,7 @@ class CarnotTree:
)
)
# committee match between tree nodes and external hashed ids
self.committees: Dict[Id, int] = {c: i for i, c in enumerate(self.inner_committees)}
self.committee_id_to_index: Dict[Id, int] = {c: i for i, c in enumerate(self.inner_committees)}
# id (int index) of committee membership by member id
self.committees_by_member: Dict[Id, int] = {
member: committee
@ -51,10 +74,10 @@ class CarnotTree:
# root committee doesnt have a parent
if committee_id == self.inner_committees[0]:
return None
return self.inner_committees[max(self.committees[committee_id] // 2 - 1, 0)]
return self.inner_committees[max(self.committee_id_to_index[committee_id] // 2 - 1, 0)]
def child_committees(self, committee_id: Id) -> Tuple[Optional[Id], Optional[Id]]:
base = self.committees[committee_id] * 2
base = self.committee_id_to_index[committee_id] * 2
first_child = base + 1
second_child = base + 2
return self.inner_committees[first_child], self.inner_committees[second_child]
@ -83,7 +106,7 @@ class CarnotTree:
return self.committee_by_committee_idx(committee_idx)
def committee_by_committee_id(self, committee_id: Id) -> Optional[Committee]:
if (committee_idx := self.committees.get(committee_id)) is not None:
if (committee_idx := self.committee_id_to_index.get(committee_id)) is not None:
return self.committee_by_committee_idx(committee_idx)
@ -120,13 +143,13 @@ class CarnotOverlay(EntropyOverlay):
def is_member_of_child_committee(self, parent: Id, child: Id) -> bool:
child_parent = self.parent_committee(child)
parent = self.carnot_tree.committee_by_member_id(parent)
return child_parent is parent
return child_parent == parent
def parent_committee(self, _id: Id) -> Optional[Committee]:
if (parent_id := self.carnot_tree.parent_committee(
self.carnot_tree.committee_id_by_member_id(_id)
)) is not None:
return self.carnot_tree.committee_by_committee_idx(self.carnot_tree.committees[parent_id])
return self.carnot_tree.committee_by_committee_idx(self.carnot_tree.committee_id_to_index[parent_id])
def leaf_committees(self) -> Set[Committee]:
return set(self.carnot_tree.leaf_committees().values())
@ -135,7 +158,7 @@ class CarnotOverlay(EntropyOverlay):
return self.carnot_tree.root_committee()
def is_child_of_root_committee(self, _id: Id) -> bool:
return self.parent_committee(_id) is self.root_committee()
return self.parent_committee(_id) == self.root_committee()
def leader_super_majority_threshold(self, _id: Id) -> int:
root_committee = self.carnot_tree.inner_committees[0]