Make shrinking work

This commit is contained in:
danielSanchezQ 2025-07-02 16:49:16 +00:00
parent a58f24941e
commit 1016d4e164
2 changed files with 76 additions and 21 deletions

View File

@ -4,6 +4,8 @@ from itertools import cycle, chain
from collections import Counter
from heapq import heappush, heappop, heapify
from numpy.f2py.crackfortran import previous_context
DeclarationId: TypeAlias = bytes
Assignations: TypeAlias = List[Set[DeclarationId]]
@ -21,26 +23,31 @@ class Subnetwork:
subnetwork_id: int
def __lt__(self, other):
return len(self) < len(other)
return (len(self), self.subnetwork_id) < (len(other), other.subnetwork_id)
def __gt__(self, other):
return (len(self), self.subnetwork_id) > (len(other), other.subnetwork_id)
def __len__(self):
return len(self.participants)
def are_subnetworks_filled_up_to_replication_factor(subnetworks: Sequence[Subnetwork], replication_factor: int) -> bool:
return all(len(subnetwork) >= replication_factor for subnetwork in subnetworks)
def all_nodes_are_assigned(participants: Sequence[Participant]) -> bool:
return all(participant.participation > 0 for participant in participants)
def all_nodes_are_assigned(participants: Sequence[Participant], average_participation: int) -> bool:
return all(participant.participation > average_participation for participant in participants)
def heappop_next_for_participant(subnetworks: List[Subnetwork], participant: Participant) -> Subnetwork:
filtered = [subnetwork for subnetwork in subnetworks if participant.declaration_id not in subnetwork.participants]
poped = heappop(filtered)
subnetworks.remove(poped)
heapify(subnetworks)
return poped
def heappop_next_for_subnetwork(subnetwork: Subnetwork, participants: List[Participant]) -> Participant:
poped = []
participant = heappop(participants)
while participant.declaration_id in subnetwork.participants:
poped.append(participant)
participant = heappop(participants)
for poped in poped:
heappush(participants, poped)
return participant
def calculate_subnetwork_assignations(
new_nodes_list: Sequence[DeclarationId],
@ -59,8 +66,11 @@ def calculate_subnetwork_assignations(
# 4) push the participant and the subnetwork into the respective heaps
# 5. Return the subnetworks ordered by its subnetwork id
# average participation per node
average_participation = max((len(previous_subnets) * replication_factor) // len(new_nodes_list), 1)
# prepare sets
previous_nodes = set(chain.from_iterable(previous_subnets))
previous_nodes = set(chain.from_iterable(previous_subnets))
new_nodes = set(new_nodes_list)
unavailable_nodes = previous_nodes - new_nodes
@ -83,21 +93,50 @@ def calculate_subnetwork_assignations(
)
heapify(subnetworks)
# when shrinking the network diversify nodes in major subnetworks into emptier ones
if len(previous_nodes) > len(new_nodes):
balance_subnetworks(subnetworks)
# this method mutates the subnetworks
fill_subnetworks(available_nodes, subnetworks, average_participation, replication_factor)
return [subnetwork.participants for subnetwork in sorted(subnetworks, key=lambda x: x.subnetwork_id)]
def fill_subnetworks(
available_nodes: List[Participant],
subnetworks: List[Subnetwork],
average_participation: int,
replication_factor: int,
):
while not (
are_subnetworks_filled_up_to_replication_factor(subnetworks, replication_factor) and
all_nodes_are_assigned(available_nodes)
are_subnetworks_filled_up_to_replication_factor(subnetworks, replication_factor) and
all_nodes_are_assigned(available_nodes, average_participation)
):
# take less participations declaration
participant = heappop(available_nodes)
# take less participants subnetwork
subnetwork = heappop(subnetworks)
# take less participations declaration not included in the subnetwork
participant = heappop_next_for_subnetwork(subnetwork, available_nodes)
# fill into subnetwork
subnetwork.participants.add(participant.declaration_id)
participant.participation += 1
# push to queues
# push to heaps
heappush(available_nodes, participant)
heappush(subnetworks, subnetwork)
return [subnetwork.participants for subnetwork in sorted(subnetworks, key=lambda x: x.subnetwork_id)]
def balance_subnetworks(
subnetworks: List[Subnetwork],
):
while (len(max(subnetworks)) - len(min(subnetworks))) > 1:
max_subnetwork = max(subnetworks)
min_subnetwork = min(subnetworks)
diff_count = (len(max_subnetwork.participants) - len(min_subnetwork.participants)) // 2
diff_participants = sorted(max_subnetwork.participants - min_subnetwork.participants)
for i in range(diff_count):
move_participant = diff_participants.pop(0)
min_subnetwork.participants.add(move_participant)
max_subnetwork.participants.remove(move_participant)
heapify(subnetworks)

View File

@ -17,14 +17,26 @@ class TestRefill(TestCase):
with self.subTest(i):
self.test_single_with(network_size=i)
def test_same_sized_evolving_network(self):
def test_evolving_increasing_network(self):
network_size = 100
replication_factor = 3
nodes = [random.randbytes(32) for _ in range(network_size)]
assignations = [set() for _ in range(network_size)]
assignations = [set() for _ in range(2048)]
assignations = calculate_subnetwork_assignations(nodes, assignations, replication_factor)
for network_size in [300, 500, 1000, 10000, 100000]:
new_nodes = self.expand_nodes(nodes, network_size)
new_nodes = self.expand_nodes(nodes, network_size - len(nodes))
self.mutate_nodes(new_nodes, network_size//3)
assignations = calculate_subnetwork_assignations(new_nodes, assignations, replication_factor)
self.assert_assignations(assignations, new_nodes, replication_factor)
def test_evolving_decreasing_network(self):
network_size = 100000
replication_factor = 3
nodes = [random.randbytes(32) for _ in range(network_size)]
assignations = [set() for _ in range(2048)]
assignations = calculate_subnetwork_assignations(nodes, assignations, replication_factor)
for network_size in reversed([100, 300, 500, 1000, 10000]):
new_nodes = self.shrink_nodes(nodes, network_size)
self.mutate_nodes(new_nodes, network_size//3)
assignations = calculate_subnetwork_assignations(new_nodes, assignations, replication_factor)
self.assert_assignations(assignations, new_nodes, replication_factor)
@ -39,6 +51,10 @@ class TestRefill(TestCase):
def expand_nodes(cls, nodes: List[DeclarationId], count: int) -> List[DeclarationId]:
return [*nodes, *(random.randbytes(32) for _ in range(count))]
@classmethod
def shrink_nodes(cls, nodes: List[DeclarationId], count: int) -> List[DeclarationId]:
return list(random.sample(nodes, k=count))
def assert_assignations(self, assignations: Assignations, nodes: List[DeclarationId], replication_factor: int):
self.assertEqual(