138 lines
5.9 KiB
Python
Raw Normal View History

import pandas as pd
import seaborn
from matplotlib import pyplot as plt
2024-05-17 16:49:13 +09:00
from adversary import NodeState
from config import Config
from simulation import Simulation
class Analysis:
def __init__(self, sim: Simulation, config: Config):
self.sim = sim
self.config = config
def run(self):
message_size_df = self.message_size_distribution()
self.bandwidth(message_size_df)
self.messages_emitted_around_interval()
self.messages_in_node_over_time()
2024-05-24 16:48:39 +09:00
# self.node_states()
def bandwidth(self, message_size_df: pd.DataFrame):
2024-05-18 00:31:29 +09:00
dataframes = []
nonzero_egresses = []
2024-05-26 00:08:11 +09:00
nonzero_ingresses = []
for egress_bandwidths, ingress_bandwidths in zip(self.sim.p2p.measurement.egress_bandwidth_per_time,
self.sim.p2p.measurement.ingress_bandwidth_per_time):
2024-05-18 00:31:29 +09:00
rows = []
for node in self.sim.p2p.nodes:
egress = egress_bandwidths[node] / 1024.0
2024-05-26 00:08:11 +09:00
ingress = ingress_bandwidths[node] / 1024.0
rows.append((node.id, egress, ingress))
if egress > 0:
nonzero_egresses.append(egress)
2024-05-26 00:08:11 +09:00
if ingress > 0:
nonzero_ingresses.append(ingress)
df = pd.DataFrame(rows, columns=["node_id", "egress", "ingress"])
2024-05-18 00:31:29 +09:00
dataframes.append(df)
2024-05-18 00:31:29 +09:00
times = range(len(dataframes))
df = pd.concat([df.assign(Time=time) for df, time in zip(dataframes, times)], ignore_index=True)
2024-05-26 00:08:11 +09:00
df = df.pivot(index="Time", columns="node_id", values=["egress", "ingress"])
2024-05-18 00:31:29 +09:00
plt.figure(figsize=(12, 6))
for column in df.columns:
marker = "x" if column[0] == "ingress" else "o"
plt.plot(df.index, df[column], marker=marker, label=column[0])
2024-05-26 00:08:11 +09:00
plt.title("Egress/ingress bandwidth of each node over time")
2024-05-18 00:31:29 +09:00
plt.xlabel("Time")
plt.ylabel("Bandwidth (KiB/s)")
plt.ylim(bottom=0)
2024-05-26 00:08:11 +09:00
# Customize the legend to show only 'egress' and 'ingress' regardless of node_id
2024-05-18 00:31:29 +09:00
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
plt.grid(True)
# Adding descriptions on the right size of the plot
egress_series = pd.Series(nonzero_egresses)
2024-05-26 00:08:11 +09:00
ingress_series = pd.Series(nonzero_ingresses)
desc = (
f"message: {message_size_df["message_size"].mean():.0f} bytes\n"
f"{self.config.description()}\n\n"
2024-05-26 00:08:11 +09:00
f"[egress(>0)]\nmean: {egress_series.mean():.2f} KiB/s\nmax: {egress_series.max():.2f} KiB/s\n\n"
f"[ingress(>0)]\nmean: {ingress_series.mean():.2f} KiB/s\nmax: {ingress_series.max():.2f} KiB/s"
)
plt.text(1.02, 0.5, desc, transform=plt.gca().transAxes, verticalalignment="center", fontsize=12)
plt.subplots_adjust(right=0.8) # Adjust layout to make room for the text
2024-05-18 00:31:29 +09:00
plt.show()
def message_size_distribution(self) -> pd.DataFrame:
2024-05-17 13:29:20 +09:00
df = pd.DataFrame(self.sim.p2p.adversary.message_sizes, columns=["message_size"])
print(df.describe())
return df
def messages_emitted_around_interval(self):
df = pd.DataFrame(
2024-05-17 14:54:23 +09:00
[(node.id, cnt, node.id < len(self.sim.config.mixnet.real_message_prob_weights))
2024-05-17 13:29:20 +09:00
for node, cnt in self.sim.p2p.adversary.senders_around_interval.items()],
columns=["node_id", "msg_count", "expected"]
)
plt.figure(figsize=(10, 6))
seaborn.barplot(data=df, x="node_id", y="msg_count", hue="expected", palette={True: "red", False: "blue"})
plt.title("Messages emitted around the promised interval")
plt.xlabel("Sender Node ID")
plt.ylabel("Msg Count")
plt.legend(title="expected")
plt.show()
def messages_in_node_over_time(self):
dataframes = []
for i, msgs_in_node in enumerate(self.sim.p2p.adversary.msgs_in_node_per_window):
time = i * self.config.adversary.io_window_moving_interval
df = pd.DataFrame([(time, node.id, msg_cnt, sender_cnt) for node, (msg_cnt, sender_cnt) in msgs_in_node.items()],
columns=["time", "node_id", "msg_cnt", "sender_cnt"])
if not df.empty:
dataframes.append(df)
df = pd.concat(dataframes, ignore_index=True)
df_pivot = df.pivot(index="time", columns="node_id", values="msg_cnt")
plt.figure(figsize=(12, 6))
for column in df_pivot.columns:
plt.plot(df_pivot.index, df_pivot[column], marker=None, label=column)
plt.title("Messages in each node over time")
plt.xlabel("Time")
plt.ylabel("Msg Count")
plt.ylim(bottom=0)
plt.grid(True)
plt.tight_layout()
plt.show()
2024-05-17 16:49:13 +09:00
df_pivot = df.pivot(index="time", columns="node_id", values="sender_cnt")
plt.figure(figsize=(12, 6))
for column in df_pivot.columns:
plt.plot(df_pivot.index, df_pivot[column], marker=None, label=column)
plt.title("Senders of messages in each node over time")
plt.xlabel("Time")
plt.ylabel("Sender Count")
plt.ylim(bottom=0)
plt.grid(True)
plt.tight_layout()
plt.show()
2024-05-17 16:49:13 +09:00
def node_states(self):
rows = []
for time, node_states in self.sim.p2p.adversary.node_states.items():
for node, state in node_states.items():
rows.append((time, node.id, state))
df = pd.DataFrame(rows, columns=["time", "node_id", "state"])
plt.figure(figsize=(10, 6))
seaborn.scatterplot(data=df, x="time", y="node_id", hue="state",
palette={NodeState.SENDING: "red", NodeState.RECEIVING: "blue"})
2024-05-17 16:49:13 +09:00
plt.title("Node states over time")
plt.xlabel("Time")
plt.ylabel("Node ID")
plt.legend(title="state")
plt.show()