2023-09-06 14:39:37 +05:30

94 lines
3.5 KiB
Python

import math
import typer
from scipy.stats import binom
CARNOT_ADVERSARY_THRESHOLD_PER_COMMITTEE: float = 1/3
CARNOT_NETWORK_ADVERSARY_THRESHOLD: float = 1 / 4
def compute_optimal_number_of_committees_and_committee_size(
number_of_nodes: int,
failure_threshold: float,
adversaries_threshold_per_committee: float,
network_adversary_threshold: float
):
assert failure_threshold > 0
# number_of_nodes is the number of nodes in the network
# failure_threshold is the prob. of failure which can be tolerated
# adversaries_threshold_per_committee is the fraction of Byzantine modes in a committee
# network_adversary_threshold is the fraction of Byzantine nodes in the network
number_of_committees = 1
committee_size = number_of_nodes
remainder = 0
current_probability = 0.0
odd_committee = 0
while current_probability < failure_threshold:
previous_number_of_committees = number_of_committees
previous_committee_size = committee_size
previous_remainder = remainder
previous_probability = current_probability
odd_committee = odd_committee + 1
number_of_committees = 2 * odd_committee + 1
committee_size = number_of_nodes // number_of_committees
remainder = number_of_nodes % number_of_committees
committee_size_probability = binom.cdf(
math.floor(adversaries_threshold_per_committee * committee_size),
committee_size,
network_adversary_threshold
)
if 0 < remainder:
committee_size_plus_one_probability = binom.cdf(
math.floor(adversaries_threshold_per_committee * (committee_size + 1)),
committee_size + 1,
network_adversary_threshold
)
current_probability = (
1 - committee_size_probability ** (number_of_committees - remainder)
* committee_size_plus_one_probability ** remainder
)
else:
current_probability = 1 - committee_size_probability ** number_of_committees
# return the number_of_committees, committee_size, remainder and current_probability
# computed at the previous iteration.
return previous_number_of_committees, previous_committee_size, previous_remainder, previous_probability
def main(ctx: typer.Context,
num_nodes: int = typer.Option(1024,
help="Set the number of nodes",),
failure_threshold: float = typer.Option(0.5,
help="Set the failure probability"),
debug: bool = typer.Option(False,
help="To debug or debug")
):
num_comm, comm_size, remainder, prob = compute_optimal_number_of_committees_and_committee_size(
num_nodes,
failure_threshold,
CARNOT_ADVERSARY_THRESHOLD_PER_COMMITTEE,
CARNOT_NETWORK_ADVERSARY_THRESHOLD)
tree_depth = 1 + int(math.log(num_comm, 2)) if num_comm > 1 else 1
num_nodes_branch= tree_depth * comm_size
debug_str = ( f" #num_nodes={num_nodes},"
f" total_tree_nodes={num_comm}, comm_size={comm_size}, remainder={remainder},"
f" computed={prob:f}(req={failure_threshold:f}), depth={tree_depth}"
) if debug else ""
tree_spec = f"tree,{num_nodes},{comm_size},{debug_str}"
branch_spec = f"branch,{num_nodes_branch},{tree_depth},{debug_str}"
print(tree_spec)
print(branch_spec)
if __name__ == "__main__":
typer.run(main)