2024-12-21 17:47:57 +09:00

371 lines
13 KiB
Python
Executable File

# !/usr/bin/env python
import argparse
import json
import statistics
from collections.abc import Iterable
from dataclasses import asdict, dataclass, field
from typing import Any, Dict, Optional
import mixlog
@dataclass
class Event:
topic: str
msg_id: str
step_id: int
node_id: int
@dataclass
class Latency:
start_event: Event
end_event: Optional[Event] = None
steps: Optional[int] = None
def finish(self, event: Event):
assert self.end_event is None
assert event.step_id >= self.start_event.step_id
self.end_event = event
self.steps = self.end_event.step_id - self.start_event.step_id
def finished(self) -> bool:
return self.end_event is not None
@dataclass
class Message:
id: str
total_latency: Latency
persistent_transmission_latencies: list[Latency] = field(default_factory=list)
temporal_processor_latencies: list[Latency] = field(default_factory=list)
def __hash__(self):
return self.id
def fully_unwrapped(self, event: Event):
self.total_latency.finish(event)
def persistent_transmission_scheduled(self, event: Event):
Message.start_new_latency(self.persistent_transmission_latencies, event)
def persistent_transmission_released(self, event: Event):
Message.finish_recent_latency(self.persistent_transmission_latencies, event)
def temporal_processor_scheduled(self, event: Event):
Message.start_new_latency(self.temporal_processor_latencies, event)
def temporal_processor_released(self, event: Event):
Message.finish_recent_latency(self.temporal_processor_latencies, event)
@staticmethod
def start_new_latency(latencies: list[Latency], event: Event):
latencies.append(Latency(event))
@staticmethod
def finish_recent_latency(latencies: list[Latency], event: Event):
for latency in reversed(latencies):
if latency.start_event.node_id == event.node_id:
assert not latency.finished()
latency.finish(event)
return
raise Exception("No latency to finish")
@property
def latency(self) -> Optional[int]:
return self.total_latency.steps
def __eq__(self, other):
if not isinstance(other, Message):
return NotImplemented
return self.latency == other.latency
def __lt__(self, other):
if not isinstance(other, Message):
return NotImplemented
if self.latency is None or other.latency is None:
return NotImplemented
return self.latency < other.latency
MessageStorage = Dict[str, Message]
@dataclass
class QueueEvent:
event: Event
queue_size_after_event: int
@dataclass
class NodeEvents:
id: int
msg_generation_events: list[Event] = field(default_factory=list)
persistent_transmission_events: list[QueueEvent] = field(default_factory=list)
persistent_transmission_queue_size: int = 0
temporal_processor_events: list[QueueEvent] = field(default_factory=list)
temporal_processor_queue_size: int = 0
fully_unwrapped_msg_events: list[Event] = field(default_factory=list)
def add_msg_generation_event(self, event: Event):
self.msg_generation_events.append(event)
def add_persistent_transmission_event(self, event: Event):
if event.topic == "PersistentTransmissionScheduled":
self.persistent_transmission_queue_size += 1
elif event.topic == "MessageReleasedFromPersistentTransmission":
self.persistent_transmission_queue_size -= 1
else:
raise Exception(
f"Unexpected event topic for persistent transmission: {event.topic}"
)
self.persistent_transmission_events.append(
QueueEvent(event, self.persistent_transmission_queue_size)
)
def add_temporal_processor_event(self, event: Event):
if event.topic == "TemporalProcessorScheduled":
self.temporal_processor_queue_size += 1
elif event.topic == "MessageReleasedFromTemporalProcessor":
self.temporal_processor_queue_size -= 1
else:
raise Exception(
f"Unexpected event topic for temporal processor: {event.topic}"
)
self.temporal_processor_events.append(
QueueEvent(event, self.temporal_processor_queue_size)
)
def add_fully_unwrapped_msg_event(self, event: Event):
self.fully_unwrapped_msg_events.append(event)
class NodeStorage:
def __init__(self):
self.storage: dict[int, NodeEvents] = {}
def get(self, node_id: int) -> NodeEvents:
if node_id not in self.storage:
self.storage[node_id] = NodeEvents(node_id)
return self.storage[node_id]
def to_dict(self) -> dict[str, dict[str, Any]]:
return {str(node_id): asdict(node) for node_id, node in self.storage.items()}
@dataclass
class LatencyAnalysis:
total_messages: int
total_complete_messages: int
total_incomplete_messages: int
min_latency_steps: int
min_latency_ms: int
min_latency_analysis: "MessageLatencyAnalysis"
max_latency_steps: int
max_latency_ms: int
max_latency_analysis: "MessageLatencyAnalysis"
avg_latency_steps: float
avg_latency_ms: int
median_latency_steps: float
median_latency_ms: int
@classmethod
def build(
cls,
message_storage: MessageStorage,
node_storage: NodeStorage,
step_duration: int,
) -> "LatencyAnalysis":
complete_messages = [
message
for message in message_storage.values()
if message.latency is not None
]
incomplete_messages = sum(
(1 for message in message_storage.values() if message.latency is None)
)
total_messages = len(message_storage)
total_complete_messages = len(complete_messages)
total_incomplete_messages = incomplete_messages
complete_latencies = [
message.latency
for message in complete_messages
if message.latency is not None
]
min_message = min(complete_messages)
min_latency_steps = min_message.latency
assert min_latency_steps is not None
min_latency_ms = int(min_latency_steps * step_duration)
min_latency_analysis = MessageLatencyAnalysis.build(
min_message, node_storage, step_duration
)
max_message = max(complete_messages)
max_latency_steps = max_message.latency
assert max_latency_steps is not None
max_latency_ms = int(max_latency_steps * step_duration)
max_latency_analysis = MessageLatencyAnalysis.build(
max_message, node_storage, step_duration
)
avg_latency_steps = statistics.mean(complete_latencies)
avg_latency_ms = int(avg_latency_steps * step_duration)
median_latency_steps = statistics.median(complete_latencies)
median_latency_ms = int(median_latency_steps * step_duration)
return cls(
total_messages=total_messages,
total_complete_messages=total_complete_messages,
total_incomplete_messages=total_incomplete_messages,
min_latency_steps=min_latency_steps,
min_latency_ms=min_latency_ms,
min_latency_analysis=min_latency_analysis,
max_latency_steps=max_latency_steps,
max_latency_ms=max_latency_ms,
max_latency_analysis=max_latency_analysis,
avg_latency_steps=avg_latency_steps,
avg_latency_ms=avg_latency_ms,
median_latency_steps=median_latency_steps,
median_latency_ms=median_latency_ms,
)
@dataclass
class MessageLatencyAnalysis:
message_id: str
persistent_latencies_step: list[int]
persistent_latencies_ms: list[int]
persistent_queue_sizes: list[int]
temporal_latencies_step: list[int]
temporal_latencies_ms: list[int]
temporal_queue_sizes: list[int]
@classmethod
def build(
cls,
message: Message,
node_storage: NodeStorage,
step_duration: int,
) -> "MessageLatencyAnalysis":
persistent_latencies_step = []
persistent_latencies_ms = []
persistent_queue_sizes = []
for latency in message.persistent_transmission_latencies:
if latency.steps is None:
continue
persistent_latencies_step.append(latency.steps)
persistent_latencies_ms.append(latency.steps * step_duration)
persistent_queue_sizes.append(
next(
(
event.queue_size_after_event
for event in node_storage.get(
latency.start_event.node_id
).persistent_transmission_events
if event.event.topic == "PersistentTransmissionScheduled"
and event.event.msg_id == message.id
)
)
)
temporal_latencies_step = []
temporal_latencies_ms = []
temporal_queue_sizes = []
for latency in message.temporal_processor_latencies:
if latency.steps is None:
continue
temporal_latencies_step.append(latency.steps)
temporal_latencies_ms.append(latency.steps * step_duration)
temporal_queue_sizes.append(
next(
(
event.queue_size_after_event
for event in node_storage.get(
latency.start_event.node_id
).temporal_processor_events
if event.event.topic == "TemporalProcessorScheduled"
and event.event.msg_id == message.id
)
)
)
return cls(
message_id=message.id,
persistent_latencies_step=persistent_latencies_step,
persistent_latencies_ms=persistent_latencies_ms,
persistent_queue_sizes=persistent_queue_sizes,
temporal_latencies_step=temporal_latencies_step,
temporal_latencies_ms=temporal_latencies_ms,
temporal_queue_sizes=temporal_queue_sizes,
)
def parse_record_stream(
record_stream: Iterable[tuple[str, dict]],
) -> tuple[MessageStorage, NodeStorage]:
msg_storage: MessageStorage = {}
node_storage: NodeStorage = NodeStorage()
for topic, record in record_stream:
if topic in ("DataMessageGenerated", "CoverMessageGenerated"):
event = event_from_record(topic, record)
payload_id = record["payload_id"]
msg_storage[payload_id] = Message(payload_id, Latency(event))
node_storage.get(record["node_id"]).add_msg_generation_event(event)
elif topic == "MessageFullyUnwrapped":
event = event_from_record(topic, record)
msg_storage[record["payload_id"]].fully_unwrapped(event)
node_storage.get(record["node_id"]).add_fully_unwrapped_msg_event(event)
elif topic == "PersistentTransmissionScheduled":
event = event_from_record(topic, record)
msg_storage[record["payload_id"]].persistent_transmission_scheduled(event)
node_storage.get(record["node_id"]).add_persistent_transmission_event(event)
elif topic == "MessageReleasedFromPersistentTransmission":
event = event_from_record(topic, record)
msg_storage[record["payload_id"]].persistent_transmission_released(event)
node_storage.get(record["node_id"]).add_persistent_transmission_event(event)
elif topic == "TemporalProcessorScheduled":
event = event_from_record(topic, record)
msg_storage[record["payload_id"]].temporal_processor_scheduled(event)
node_storage.get(record["node_id"]).add_temporal_processor_event(event)
elif topic == "MessageReleasedFromTemporalProcessor":
event = event_from_record(topic, record)
msg_storage[record["payload_id"]].temporal_processor_released(event)
node_storage.get(record["node_id"]).add_temporal_processor_event(event)
return msg_storage, node_storage
def event_from_record(topic: str, record: dict) -> Event:
return Event(topic, record["payload_id"], record["step_id"], record["node_id"])
def build_argument_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Log analysis for nomos-simulations.")
parser.add_argument(
"--step-duration",
type=int,
default=100,
help="Duration (in ms) of each step in the simulation.",
)
parser.add_argument(
"input_file",
nargs="?",
help="The file to parse. If not provided, input will be read from stdin.",
)
return parser
if __name__ == "__main__":
argument_parser = build_argument_parser()
arguments = argument_parser.parse_args()
input_stream = mixlog.get_input_stream(arguments.input_file)
messages, nodes = parse_record_stream(input_stream)
results = LatencyAnalysis.build(messages, nodes, arguments.step_duration)
print(json.dumps(asdict(results), indent=2))