mirror of
https://github.com/logos-blockchain/logos-blockchain-simulations.git
synced 2026-01-02 21:23:11 +00:00
371 lines
13 KiB
Python
Executable File
371 lines
13 KiB
Python
Executable File
# !/usr/bin/env python
|
|
import argparse
|
|
import json
|
|
import statistics
|
|
from collections.abc import Iterable
|
|
from dataclasses import asdict, dataclass, field
|
|
from typing import Any, Dict, Optional
|
|
|
|
import mixlog
|
|
|
|
|
|
@dataclass
|
|
class Event:
|
|
topic: str
|
|
msg_id: str
|
|
step_id: int
|
|
node_id: int
|
|
|
|
|
|
@dataclass
|
|
class Latency:
|
|
start_event: Event
|
|
end_event: Optional[Event] = None
|
|
steps: Optional[int] = None
|
|
|
|
def finish(self, event: Event):
|
|
assert self.end_event is None
|
|
assert event.step_id >= self.start_event.step_id
|
|
self.end_event = event
|
|
self.steps = self.end_event.step_id - self.start_event.step_id
|
|
|
|
def finished(self) -> bool:
|
|
return self.end_event is not None
|
|
|
|
|
|
@dataclass
|
|
class Message:
|
|
id: str
|
|
total_latency: Latency
|
|
persistent_transmission_latencies: list[Latency] = field(default_factory=list)
|
|
temporal_processor_latencies: list[Latency] = field(default_factory=list)
|
|
|
|
def __hash__(self):
|
|
return self.id
|
|
|
|
def fully_unwrapped(self, event: Event):
|
|
self.total_latency.finish(event)
|
|
|
|
def persistent_transmission_scheduled(self, event: Event):
|
|
Message.start_new_latency(self.persistent_transmission_latencies, event)
|
|
|
|
def persistent_transmission_released(self, event: Event):
|
|
Message.finish_recent_latency(self.persistent_transmission_latencies, event)
|
|
|
|
def temporal_processor_scheduled(self, event: Event):
|
|
Message.start_new_latency(self.temporal_processor_latencies, event)
|
|
|
|
def temporal_processor_released(self, event: Event):
|
|
Message.finish_recent_latency(self.temporal_processor_latencies, event)
|
|
|
|
@staticmethod
|
|
def start_new_latency(latencies: list[Latency], event: Event):
|
|
latencies.append(Latency(event))
|
|
|
|
@staticmethod
|
|
def finish_recent_latency(latencies: list[Latency], event: Event):
|
|
for latency in reversed(latencies):
|
|
if latency.start_event.node_id == event.node_id:
|
|
assert not latency.finished()
|
|
latency.finish(event)
|
|
return
|
|
raise Exception("No latency to finish")
|
|
|
|
@property
|
|
def latency(self) -> Optional[int]:
|
|
return self.total_latency.steps
|
|
|
|
def __eq__(self, other):
|
|
if not isinstance(other, Message):
|
|
return NotImplemented
|
|
return self.latency == other.latency
|
|
|
|
def __lt__(self, other):
|
|
if not isinstance(other, Message):
|
|
return NotImplemented
|
|
if self.latency is None or other.latency is None:
|
|
return NotImplemented
|
|
return self.latency < other.latency
|
|
|
|
|
|
MessageStorage = Dict[str, Message]
|
|
|
|
|
|
@dataclass
|
|
class QueueEvent:
|
|
event: Event
|
|
queue_size_after_event: int
|
|
|
|
|
|
@dataclass
|
|
class NodeEvents:
|
|
id: int
|
|
msg_generation_events: list[Event] = field(default_factory=list)
|
|
persistent_transmission_events: list[QueueEvent] = field(default_factory=list)
|
|
persistent_transmission_queue_size: int = 0
|
|
temporal_processor_events: list[QueueEvent] = field(default_factory=list)
|
|
temporal_processor_queue_size: int = 0
|
|
fully_unwrapped_msg_events: list[Event] = field(default_factory=list)
|
|
|
|
def add_msg_generation_event(self, event: Event):
|
|
self.msg_generation_events.append(event)
|
|
|
|
def add_persistent_transmission_event(self, event: Event):
|
|
if event.topic == "PersistentTransmissionScheduled":
|
|
self.persistent_transmission_queue_size += 1
|
|
elif event.topic == "MessageReleasedFromPersistentTransmission":
|
|
self.persistent_transmission_queue_size -= 1
|
|
else:
|
|
raise Exception(
|
|
f"Unexpected event topic for persistent transmission: {event.topic}"
|
|
)
|
|
self.persistent_transmission_events.append(
|
|
QueueEvent(event, self.persistent_transmission_queue_size)
|
|
)
|
|
|
|
def add_temporal_processor_event(self, event: Event):
|
|
if event.topic == "TemporalProcessorScheduled":
|
|
self.temporal_processor_queue_size += 1
|
|
elif event.topic == "MessageReleasedFromTemporalProcessor":
|
|
self.temporal_processor_queue_size -= 1
|
|
else:
|
|
raise Exception(
|
|
f"Unexpected event topic for temporal processor: {event.topic}"
|
|
)
|
|
self.temporal_processor_events.append(
|
|
QueueEvent(event, self.temporal_processor_queue_size)
|
|
)
|
|
|
|
def add_fully_unwrapped_msg_event(self, event: Event):
|
|
self.fully_unwrapped_msg_events.append(event)
|
|
|
|
|
|
class NodeStorage:
|
|
def __init__(self):
|
|
self.storage: dict[int, NodeEvents] = {}
|
|
|
|
def get(self, node_id: int) -> NodeEvents:
|
|
if node_id not in self.storage:
|
|
self.storage[node_id] = NodeEvents(node_id)
|
|
return self.storage[node_id]
|
|
|
|
def to_dict(self) -> dict[str, dict[str, Any]]:
|
|
return {str(node_id): asdict(node) for node_id, node in self.storage.items()}
|
|
|
|
|
|
@dataclass
|
|
class LatencyAnalysis:
|
|
total_messages: int
|
|
total_complete_messages: int
|
|
total_incomplete_messages: int
|
|
min_latency_steps: int
|
|
min_latency_ms: int
|
|
min_latency_analysis: "MessageLatencyAnalysis"
|
|
max_latency_steps: int
|
|
max_latency_ms: int
|
|
max_latency_analysis: "MessageLatencyAnalysis"
|
|
avg_latency_steps: float
|
|
avg_latency_ms: int
|
|
median_latency_steps: float
|
|
median_latency_ms: int
|
|
|
|
@classmethod
|
|
def build(
|
|
cls,
|
|
message_storage: MessageStorage,
|
|
node_storage: NodeStorage,
|
|
step_duration: int,
|
|
) -> "LatencyAnalysis":
|
|
complete_messages = [
|
|
message
|
|
for message in message_storage.values()
|
|
if message.latency is not None
|
|
]
|
|
incomplete_messages = sum(
|
|
(1 for message in message_storage.values() if message.latency is None)
|
|
)
|
|
|
|
total_messages = len(message_storage)
|
|
total_complete_messages = len(complete_messages)
|
|
total_incomplete_messages = incomplete_messages
|
|
|
|
complete_latencies = [
|
|
message.latency
|
|
for message in complete_messages
|
|
if message.latency is not None
|
|
]
|
|
|
|
min_message = min(complete_messages)
|
|
min_latency_steps = min_message.latency
|
|
assert min_latency_steps is not None
|
|
min_latency_ms = int(min_latency_steps * step_duration)
|
|
min_latency_analysis = MessageLatencyAnalysis.build(
|
|
min_message, node_storage, step_duration
|
|
)
|
|
|
|
max_message = max(complete_messages)
|
|
max_latency_steps = max_message.latency
|
|
assert max_latency_steps is not None
|
|
max_latency_ms = int(max_latency_steps * step_duration)
|
|
max_latency_analysis = MessageLatencyAnalysis.build(
|
|
max_message, node_storage, step_duration
|
|
)
|
|
|
|
avg_latency_steps = statistics.mean(complete_latencies)
|
|
avg_latency_ms = int(avg_latency_steps * step_duration)
|
|
median_latency_steps = statistics.median(complete_latencies)
|
|
median_latency_ms = int(median_latency_steps * step_duration)
|
|
|
|
return cls(
|
|
total_messages=total_messages,
|
|
total_complete_messages=total_complete_messages,
|
|
total_incomplete_messages=total_incomplete_messages,
|
|
min_latency_steps=min_latency_steps,
|
|
min_latency_ms=min_latency_ms,
|
|
min_latency_analysis=min_latency_analysis,
|
|
max_latency_steps=max_latency_steps,
|
|
max_latency_ms=max_latency_ms,
|
|
max_latency_analysis=max_latency_analysis,
|
|
avg_latency_steps=avg_latency_steps,
|
|
avg_latency_ms=avg_latency_ms,
|
|
median_latency_steps=median_latency_steps,
|
|
median_latency_ms=median_latency_ms,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class MessageLatencyAnalysis:
|
|
message_id: str
|
|
persistent_latencies_step: list[int]
|
|
persistent_latencies_ms: list[int]
|
|
persistent_queue_sizes: list[int]
|
|
temporal_latencies_step: list[int]
|
|
temporal_latencies_ms: list[int]
|
|
temporal_queue_sizes: list[int]
|
|
|
|
@classmethod
|
|
def build(
|
|
cls,
|
|
message: Message,
|
|
node_storage: NodeStorage,
|
|
step_duration: int,
|
|
) -> "MessageLatencyAnalysis":
|
|
persistent_latencies_step = []
|
|
persistent_latencies_ms = []
|
|
persistent_queue_sizes = []
|
|
for latency in message.persistent_transmission_latencies:
|
|
if latency.steps is None:
|
|
continue
|
|
persistent_latencies_step.append(latency.steps)
|
|
persistent_latencies_ms.append(latency.steps * step_duration)
|
|
persistent_queue_sizes.append(
|
|
next(
|
|
(
|
|
event.queue_size_after_event
|
|
for event in node_storage.get(
|
|
latency.start_event.node_id
|
|
).persistent_transmission_events
|
|
if event.event.topic == "PersistentTransmissionScheduled"
|
|
and event.event.msg_id == message.id
|
|
)
|
|
)
|
|
)
|
|
|
|
temporal_latencies_step = []
|
|
temporal_latencies_ms = []
|
|
temporal_queue_sizes = []
|
|
for latency in message.temporal_processor_latencies:
|
|
if latency.steps is None:
|
|
continue
|
|
temporal_latencies_step.append(latency.steps)
|
|
temporal_latencies_ms.append(latency.steps * step_duration)
|
|
temporal_queue_sizes.append(
|
|
next(
|
|
(
|
|
event.queue_size_after_event
|
|
for event in node_storage.get(
|
|
latency.start_event.node_id
|
|
).temporal_processor_events
|
|
if event.event.topic == "TemporalProcessorScheduled"
|
|
and event.event.msg_id == message.id
|
|
)
|
|
)
|
|
)
|
|
|
|
return cls(
|
|
message_id=message.id,
|
|
persistent_latencies_step=persistent_latencies_step,
|
|
persistent_latencies_ms=persistent_latencies_ms,
|
|
persistent_queue_sizes=persistent_queue_sizes,
|
|
temporal_latencies_step=temporal_latencies_step,
|
|
temporal_latencies_ms=temporal_latencies_ms,
|
|
temporal_queue_sizes=temporal_queue_sizes,
|
|
)
|
|
|
|
|
|
def parse_record_stream(
|
|
record_stream: Iterable[tuple[str, dict]],
|
|
) -> tuple[MessageStorage, NodeStorage]:
|
|
msg_storage: MessageStorage = {}
|
|
node_storage: NodeStorage = NodeStorage()
|
|
|
|
for topic, record in record_stream:
|
|
if topic in ("DataMessageGenerated", "CoverMessageGenerated"):
|
|
event = event_from_record(topic, record)
|
|
payload_id = record["payload_id"]
|
|
msg_storage[payload_id] = Message(payload_id, Latency(event))
|
|
node_storage.get(record["node_id"]).add_msg_generation_event(event)
|
|
elif topic == "MessageFullyUnwrapped":
|
|
event = event_from_record(topic, record)
|
|
msg_storage[record["payload_id"]].fully_unwrapped(event)
|
|
node_storage.get(record["node_id"]).add_fully_unwrapped_msg_event(event)
|
|
elif topic == "PersistentTransmissionScheduled":
|
|
event = event_from_record(topic, record)
|
|
msg_storage[record["payload_id"]].persistent_transmission_scheduled(event)
|
|
node_storage.get(record["node_id"]).add_persistent_transmission_event(event)
|
|
elif topic == "MessageReleasedFromPersistentTransmission":
|
|
event = event_from_record(topic, record)
|
|
msg_storage[record["payload_id"]].persistent_transmission_released(event)
|
|
node_storage.get(record["node_id"]).add_persistent_transmission_event(event)
|
|
elif topic == "TemporalProcessorScheduled":
|
|
event = event_from_record(topic, record)
|
|
msg_storage[record["payload_id"]].temporal_processor_scheduled(event)
|
|
node_storage.get(record["node_id"]).add_temporal_processor_event(event)
|
|
elif topic == "MessageReleasedFromTemporalProcessor":
|
|
event = event_from_record(topic, record)
|
|
msg_storage[record["payload_id"]].temporal_processor_released(event)
|
|
node_storage.get(record["node_id"]).add_temporal_processor_event(event)
|
|
|
|
return msg_storage, node_storage
|
|
|
|
|
|
def event_from_record(topic: str, record: dict) -> Event:
|
|
return Event(topic, record["payload_id"], record["step_id"], record["node_id"])
|
|
|
|
|
|
def build_argument_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser(description="Log analysis for nomos-simulations.")
|
|
parser.add_argument(
|
|
"--step-duration",
|
|
type=int,
|
|
default=100,
|
|
help="Duration (in ms) of each step in the simulation.",
|
|
)
|
|
parser.add_argument(
|
|
"input_file",
|
|
nargs="?",
|
|
help="The file to parse. If not provided, input will be read from stdin.",
|
|
)
|
|
return parser
|
|
|
|
|
|
if __name__ == "__main__":
|
|
argument_parser = build_argument_parser()
|
|
arguments = argument_parser.parse_args()
|
|
|
|
input_stream = mixlog.get_input_stream(arguments.input_file)
|
|
messages, nodes = parse_record_stream(input_stream)
|
|
|
|
results = LatencyAnalysis.build(messages, nodes, arguments.step_duration)
|
|
print(json.dumps(asdict(results), indent=2))
|