update batch.py

This commit is contained in:
Youngjoon Lee 2025-02-06 15:04:39 +09:00
parent 6bf7ae49bd
commit 1a4657202b
No known key found for this signature in database
GPG Key ID: D94003D91DE12141

View File

@ -1,22 +1,20 @@
# !/usr/bin/env python
import argparse
import csv
import json
import os
import subprocess
import sys
from collections import OrderedDict
from dataclasses import asdict
import latency
import mixlog
STEP_DURATION_MS = 50
def bandwidth_result(log_path: str) -> dict[str, float]:
def bandwidth_result(log_path: str, step_duration_ms: int) -> dict[str, float]:
max_step_id = 0
for _, json_msg in mixlog.get_input_stream(log_path):
if (step_id := json_msg.get("step_id")) is not None:
max_step_id = max(max_step_id, step_id)
for topic, json_msg in mixlog.get_input_stream(log_path):
if topic == "MessageFullyUnwrapped":
max_step_id = max(max_step_id, json_msg["message"]["step_id"])
with open(log_path, "r") as file:
for line in file:
@ -27,7 +25,7 @@ def bandwidth_result(log_path: str) -> dict[str, float]:
line = line.replace(", ", ', "')
record = json.loads(line)
elapsed = (max_step_id * STEP_DURATION_MS) / 1000.0
elapsed = (max_step_id * step_duration_ms) / 1000.0
return {
"min": float(record["min_node_total_bandwidth"]) / elapsed,
"avg": float(record["avg_node_total_bandwidth"]) / elapsed,
@ -44,196 +42,232 @@ def topology_result(log_path: str) -> dict[str, int]:
raise Exception("No topology found in log file")
# Read the CSV data
csv_data = []
with open("params.csv", mode="r") as csvfile: # Replace with your CSV file name
reader = csv.DictReader(csvfile, delimiter=",")
csv_data = list(reader)
# Read the original blendnet.json
with open("../config/blendnet.json", "r") as jsonfile:
original_json = json.load(jsonfile)
# Directory to save modified JSON files
output_dir = "modified_configs"
os.makedirs(output_dir, exist_ok=True)
# Modify and save JSON files for each row in CSV
config_paths = []
for idx, row in enumerate(csv_data):
modified_json = OrderedDict(original_json) # Preserve original field order
# Apply modifications
modified_json["network_settings"]["regions"]["north america"] = 0.0
modified_json["network_settings"]["regions"]["europe"] = 1.0
modified_json["network_settings"]["regions"]["asia"] = 0.0
modified_json["step_time"] = f"{STEP_DURATION_MS}ms"
modified_json["node_count"] = int(row["network_size"])
modified_json["wards"][0]["sum"] = 1000
modified_json["connected_peers_count"] = int(row["peering_degree"])
modified_json["data_message_lottery_interval"] = "20s"
modified_json["stake_proportion"] = 0.0
modified_json["persistent_transmission"]["max_emission_frequency"] = 1.0
modified_json["persistent_transmission"]["drop_message_probability"] = 0.0
modified_json["epoch_duration"] = (
f"{int(row['cover_slots_per_epoch']) * int(row['cover_slot_duration'])}s"
def build_argument_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description="Log analysis for nomos-simulations.")
parser.add_argument(
"--step-duration",
type=int,
help="Duration (in ms) of each step in the simulation.",
)
modified_json["slots_per_epoch"] = int(row["cover_slots_per_epoch"])
modified_json["slot_duration"] = f"{row['cover_slot_duration']}s"
modified_json["max_delay_seconds"] = int(row["max_temporal_delay"])
modified_json["number_of_hops"] = int(row["blend_hops"])
modified_json["number_of_blend_layers"] = int(row["blend_hops"])
# Save modified JSON
output_path = os.path.join(output_dir, f"{idx}.json")
with open(output_path, "w") as outfile:
json.dump(modified_json, outfile, indent=2)
print("Saved modified JSON to:", output_path)
config_paths.append(output_path)
# Directory to save logs
log_dir = "logs"
os.makedirs(log_dir, exist_ok=True)
log_paths = []
for idx, config_path in enumerate(config_paths):
log_path = f"{log_dir}/{idx}.log"
with open(log_path, "w") as log_file:
print(f"Running simulation-{idx}: {log_file.name} with config: {config_path}")
subprocess.run(
["../../target/release/blendnet-sims", "--input-settings", config_path],
stdout=log_file,
)
print(f"Simulation-{idx} completed: {log_file.name}")
log_paths.append(log_path)
print("Analyzing logs...")
print("=================")
with open("output.csv", "w", newline="") as file:
print(f"Writing results to: {file.name}")
csv_writer = csv.writer(file)
csv_writer.writerow(
[
"network_diameter",
"msg_count",
"min_latency",
"avg_latency",
"median_latency",
"max_latency",
"min_latency_msg_id",
"min_latency_msg_persistent_latency_ms",
"min_latency_msg_persistent_queue_sizes",
"min_latency_msg_temporal_latency_ms",
"min_latency_msg_temporal_queue_sizes",
"max_latency_msg_id",
"max_latency_msg_persistent_latency_ms",
"max_latency_msg_persistent_queue_sizes",
"max_latency_msg_temporal_latency_ms",
"max_latency_msg_temporal_queue_sizes",
"min_bandwidth_kbps",
"avg_bandwidth_kbps",
"max_bandwidth_kbps",
]
parser.add_argument(
"--params-file",
type=str,
help="A CSV file that contains all parameter sets",
)
parser.add_argument(
"--orig-config-file",
type=str,
help="An original blendnet config JSON file that will be modified as specified in `params_file`",
)
parser.add_argument(
"--outdir",
type=str,
help="A output directory to be created",
)
parser.add_argument(
"--skip-run",
action="store_true",
help="Skip running the simulations and only analyze the logs",
)
return parser
for idx, log_path in enumerate(log_paths):
csv_row = []
csv_row.append(topology_result(log_path)["diameter"])
message_storage, node_storage = latency.parse_record_stream(
mixlog.get_input_stream(log_path)
if __name__ == "__main__":
argument_parser = build_argument_parser()
args = argument_parser.parse_args()
# Read the params CSV file
csv_data = []
with open(args.params_file, mode="r") as csvfile:
reader = csv.DictReader(csvfile, delimiter=",")
csv_data = list(reader)
# Read the original blendnet json config file
with open(args.orig_config_file, "r") as jsonfile:
original_json = json.load(jsonfile)
# Directory to save modified JSON files
modified_configs_dir = os.path.join(args.outdir, "modified_configs")
os.makedirs(modified_configs_dir, exist_ok=True)
# Modify and save JSON files for each row in CSV
config_paths = []
for idx, row in enumerate(csv_data):
output_path = os.path.join(modified_configs_dir, f"{idx}.json")
config_paths.append(output_path)
if args.skip_run:
continue
modified_json = OrderedDict(original_json) # Preserve original field order
# Apply modifications
modified_json["network_settings"]["regions"]["north america west"] = 0.06
modified_json["network_settings"]["regions"]["north america east"] = 0.15
modified_json["network_settings"]["regions"]["north america central"] = 0.02
modified_json["network_settings"]["regions"]["europe"] = 0.47
modified_json["network_settings"]["regions"]["northern europe"] = 0.10
modified_json["network_settings"]["regions"]["east asia"] = 0.10
modified_json["network_settings"]["regions"]["southeast asia"] = 0.07
modified_json["network_settings"]["regions"]["australia"] = 0.03
modified_json["step_time"] = f"{args.step_duration}ms"
modified_json["node_count"] = int(row["network_size"])
modified_json["wards"][0]["sum"] = 1000
modified_json["connected_peers_count"] = int(row["peering_degree"])
modified_json["data_message_lottery_interval"] = "20s"
modified_json["stake_proportion"] = 0.0
modified_json["persistent_transmission"]["max_emission_frequency"] = 1.0
modified_json["persistent_transmission"]["drop_message_probability"] = 0.0
modified_json["epoch_duration"] = (
f"{int(row['cover_slots_per_epoch']) * int(row['cover_slot_duration'])}s"
)
with open(f"{log_dir}/msgs-{idx}.json", "w") as file:
json.dump(
{msg_id: asdict(msg) for msg_id, msg in message_storage.items()},
file,
indent=2,
modified_json["slots_per_epoch"] = int(row["cover_slots_per_epoch"])
modified_json["slot_duration"] = f"{row['cover_slot_duration']}s"
modified_json["max_delay_seconds"] = int(row["max_temporal_delay"])
modified_json["number_of_hops"] = int(row["blend_hops"])
modified_json["number_of_blend_layers"] = int(row["blend_hops"])
# Save modified JSON
with open(output_path, "w") as outfile:
json.dump(modified_json, outfile, indent=2)
print("Saved modified JSON to:", output_path)
# Directory to save logs
log_dir = os.path.join(args.outdir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_paths = []
for idx, config_path in enumerate(config_paths):
log_path = f"{log_dir}/{idx}.log"
log_paths.append(log_path)
if args.skip_run:
continue
with open(log_path, "w") as log_file:
print(
f"Running simulation-{idx}: {log_file.name} with config: {config_path}"
)
with open(f"{log_dir}/nodes-{idx}.json", "w") as file:
json.dump(node_storage.to_dict(), file, indent=2)
subprocess.run(
["../../target/release/blendnet-sims", "--input-settings", config_path],
stdout=log_file,
)
print(f"Simulation-{idx} completed: {log_file.name}")
latency_analysis = latency.LatencyAnalysis.build(
message_storage, node_storage, STEP_DURATION_MS
print("Analyzing logs...")
print("=================")
with open(os.path.join(args.outdir, "output.csv"), "w", newline="") as file:
print(f"Writing results to: {file.name}")
csv_writer = csv.writer(file)
csv_writer.writerow(
[
"network_diameter",
"msg_count",
"min_latency_sec",
"avg_latency_sec",
"median_latency_sec",
"max_latency_sec",
"min_latency_msg_id",
"min_latency_msg_persistent_latency_sec",
"min_latency_msg_persistent_index",
"min_latency_msg_temporal_latency_sec",
"min_latency_msg_temporal_index",
"max_latency_msg_id",
"max_latency_msg_persistent_latency_sec",
"max_latency_msg_persistent_index",
"max_latency_msg_temporal_latency_sec",
"max_latency_msg_temporal_index",
"min_bandwidth_kbps",
"avg_bandwidth_kbps",
"max_bandwidth_kbps",
]
)
csv_row.append(latency_analysis.total_complete_messages)
csv_row.append(float(latency_analysis.min_latency_ms) / 1000.0)
csv_row.append(float(latency_analysis.avg_latency_ms) / 1000.0)
csv_row.append(float(latency_analysis.median_latency_ms) / 1000.0)
csv_row.append(float(latency_analysis.max_latency_ms) / 1000.0)
csv_row.append(latency_analysis.min_latency_analysis.message_id)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.min_latency_analysis.persistent_latencies_ms
],
for idx, log_path in enumerate(log_paths):
csv_row = []
csv_row.append(topology_result(log_path)["diameter"])
latency_analysis = latency.LatencyAnalysis.build(
mixlog.get_input_stream(log_path)
)
csv_row.append(latency_analysis.total_messages)
csv_row.append(float(latency_analysis.min_latency_ms) / 1000.0)
csv_row.append(float(latency_analysis.avg_latency_ms) / 1000.0)
csv_row.append(float(latency_analysis.median_latency_ms) / 1000.0)
csv_row.append(float(latency_analysis.max_latency_ms) / 1000.0)
csv_row.append(latency_analysis.min_latency_analysis.message_id)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.min_latency_analysis.persistent_latencies_ms
],
)
)
)
)
csv_row.append(
",".join(
map(str, latency_analysis.min_latency_analysis.persistent_queue_sizes)
)
)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.min_latency_analysis.temporal_latencies_ms
],
csv_row.append(
",".join(
map(str, latency_analysis.min_latency_analysis.persistent_indices)
)
)
)
csv_row.append(
",".join(
map(str, latency_analysis.min_latency_analysis.temporal_queue_sizes)
)
)
csv_row.append(latency_analysis.max_latency_analysis.message_id)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.max_latency_analysis.persistent_latencies_ms
],
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.min_latency_analysis.temporal_latencies_ms
],
)
)
)
)
csv_row.append(
",".join(
map(str, latency_analysis.max_latency_analysis.persistent_queue_sizes)
)
)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.max_latency_analysis.temporal_latencies_ms
],
csv_row.append(
",".join(
map(str, latency_analysis.min_latency_analysis.temporal_indices)
)
)
)
csv_row.append(
",".join(
map(str, latency_analysis.max_latency_analysis.temporal_queue_sizes)
csv_row.append(latency_analysis.max_latency_analysis.message_id)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.max_latency_analysis.persistent_latencies_ms
],
)
)
)
csv_row.append(
",".join(
map(str, latency_analysis.max_latency_analysis.persistent_indices)
)
)
csv_row.append(
",".join(
map(
str,
[
ms / 1000.0
for ms in latency_analysis.max_latency_analysis.temporal_latencies_ms
],
)
)
)
csv_row.append(
",".join(
map(str, latency_analysis.max_latency_analysis.temporal_indices)
)
)
)
bandwidth_res = bandwidth_result(log_path)
csv_row.append(bandwidth_res["min"] * 8 / 1000.0)
csv_row.append(bandwidth_res["avg"] * 8 / 1000.0)
csv_row.append(bandwidth_res["max"] * 8 / 1000.0)
bandwidth_res = bandwidth_result(log_path, args.step_duration)
csv_row.append(bandwidth_res["min"] * 8 / 1000.0)
csv_row.append(bandwidth_res["avg"] * 8 / 1000.0)
csv_row.append(bandwidth_res["max"] * 8 / 1000.0)
csv_writer.writerow(csv_row)
csv_writer.writerow(csv_row)
print(f"The outputs have been successfully written to {file.name}")
print(f"The outputs have been successfully written to {file.name}")