2024-12-19 14:14:40 +09:00
|
|
|
import csv
|
|
|
|
|
import json
|
|
|
|
|
import os
|
|
|
|
|
import subprocess
|
2024-12-21 16:51:27 +09:00
|
|
|
import sys
|
2024-12-19 14:14:40 +09:00
|
|
|
from collections import OrderedDict
|
2024-12-20 18:59:20 +09:00
|
|
|
from dataclasses import asdict
|
2024-12-19 14:14:40 +09:00
|
|
|
|
|
|
|
|
import latency
|
|
|
|
|
import mixlog
|
|
|
|
|
|
|
|
|
|
STEP_DURATION_MS = 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bandwidth_result(log_path: str) -> dict[str, float]:
|
2024-12-20 16:50:05 +09:00
|
|
|
max_step_id = 0
|
|
|
|
|
for _, json_msg in mixlog.get_input_stream(log_path):
|
|
|
|
|
if (step_id := json_msg.get("step_id")) is not None:
|
|
|
|
|
max_step_id = max(max_step_id, step_id)
|
|
|
|
|
|
|
|
|
|
with open(log_path, "r") as file:
|
|
|
|
|
for line in file:
|
|
|
|
|
if "total_outbound_bandwidth" in line:
|
|
|
|
|
line = line[line.find("{") :]
|
|
|
|
|
line = line.replace("{ ", '{"')
|
|
|
|
|
line = line.replace(": ", '": ')
|
|
|
|
|
line = line.replace(", ", ', "')
|
|
|
|
|
record = json.loads(line)
|
|
|
|
|
|
|
|
|
|
elapsed = (max_step_id * STEP_DURATION_MS) / 1000.0
|
|
|
|
|
return {
|
|
|
|
|
"min": float(record["min_node_total_bandwidth"]) / elapsed,
|
|
|
|
|
"avg": float(record["avg_node_total_bandwidth"]) / elapsed,
|
|
|
|
|
"max": float(record["max_node_total_bandwidth"]) / elapsed,
|
|
|
|
|
}
|
2024-12-19 14:14:40 +09:00
|
|
|
|
|
|
|
|
raise Exception("No bandwidth data found in log file")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def topology_result(log_path: str) -> dict[str, int]:
|
2024-12-20 16:50:05 +09:00
|
|
|
for topic, json_msg in mixlog.get_input_stream(log_path):
|
|
|
|
|
if topic == "Topology":
|
|
|
|
|
return json_msg
|
|
|
|
|
raise Exception("No topology found in log file")
|
2024-12-19 14:14:40 +09:00
|
|
|
|
|
|
|
|
|
|
|
|
|
# Read the CSV data
|
|
|
|
|
csv_data = []
|
|
|
|
|
with open("params.csv", mode="r") as csvfile: # Replace with your CSV file name
|
|
|
|
|
reader = csv.DictReader(csvfile, delimiter=",")
|
|
|
|
|
csv_data = list(reader)
|
|
|
|
|
|
|
|
|
|
# Read the original blendnet.json
|
|
|
|
|
with open("../config/blendnet.json", "r") as jsonfile:
|
|
|
|
|
original_json = json.load(jsonfile)
|
|
|
|
|
|
|
|
|
|
# Directory to save modified JSON files
|
|
|
|
|
output_dir = "modified_configs"
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
# Modify and save JSON files for each row in CSV
|
|
|
|
|
config_paths = []
|
|
|
|
|
for idx, row in enumerate(csv_data):
|
|
|
|
|
modified_json = OrderedDict(original_json) # Preserve original field order
|
|
|
|
|
|
|
|
|
|
# Apply modifications
|
|
|
|
|
modified_json["network_settings"]["regions"]["north america"] = 0.0
|
|
|
|
|
modified_json["network_settings"]["regions"]["europe"] = 1.0
|
|
|
|
|
modified_json["network_settings"]["regions"]["asia"] = 0.0
|
|
|
|
|
modified_json["step_time"] = f"{STEP_DURATION_MS}ms"
|
|
|
|
|
modified_json["node_count"] = int(row["network_size"])
|
|
|
|
|
modified_json["wards"][0]["sum"] = 1000
|
|
|
|
|
modified_json["connected_peers_count"] = int(row["peering_degree"])
|
|
|
|
|
modified_json["data_message_lottery_interval"] = "20s"
|
|
|
|
|
modified_json["stake_proportion"] = 0.0
|
|
|
|
|
modified_json["persistent_transmission"]["max_emission_frequency"] = 1.0
|
|
|
|
|
modified_json["persistent_transmission"]["drop_message_probability"] = 0.0
|
|
|
|
|
modified_json["epoch_duration"] = (
|
|
|
|
|
f"{int(row['cover_slots_per_epoch']) * int(row['cover_slot_duration'])}s"
|
|
|
|
|
)
|
|
|
|
|
modified_json["slots_per_epoch"] = int(row["cover_slots_per_epoch"])
|
|
|
|
|
modified_json["slot_duration"] = f"{row['cover_slot_duration']}s"
|
|
|
|
|
modified_json["max_delay_seconds"] = int(row["max_temporal_delay"])
|
|
|
|
|
modified_json["number_of_hops"] = int(row["blend_hops"])
|
|
|
|
|
modified_json["number_of_blend_layers"] = int(row["blend_hops"])
|
|
|
|
|
|
|
|
|
|
# Save modified JSON
|
|
|
|
|
output_path = os.path.join(output_dir, f"{idx}.json")
|
|
|
|
|
with open(output_path, "w") as outfile:
|
|
|
|
|
json.dump(modified_json, outfile, indent=2)
|
|
|
|
|
print("Saved modified JSON to:", output_path)
|
|
|
|
|
config_paths.append(output_path)
|
|
|
|
|
|
|
|
|
|
# Directory to save logs
|
|
|
|
|
log_dir = "logs"
|
|
|
|
|
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
log_paths = []
|
|
|
|
|
for idx, config_path in enumerate(config_paths):
|
|
|
|
|
log_path = f"{log_dir}/{idx}.log"
|
|
|
|
|
with open(log_path, "w") as log_file:
|
|
|
|
|
print(f"Running simulation-{idx}: {log_file.name} with config: {config_path}")
|
|
|
|
|
subprocess.run(
|
|
|
|
|
["../../target/release/blendnet-sims", "--input-settings", config_path],
|
|
|
|
|
stdout=log_file,
|
|
|
|
|
)
|
|
|
|
|
print(f"Simulation-{idx} completed: {log_file.name}")
|
|
|
|
|
log_paths.append(log_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Analyzing logs...")
|
|
|
|
|
print("=================")
|
2024-12-21 16:51:27 +09:00
|
|
|
|
2024-12-21 21:46:00 +09:00
|
|
|
with open("output.csv", "w", newline="") as file:
|
2024-12-21 21:48:54 +09:00
|
|
|
print(f"Writing results to: {file.name}")
|
2024-12-21 21:46:00 +09:00
|
|
|
csv_writer = csv.writer(file)
|
|
|
|
|
csv_writer.writerow(
|
|
|
|
|
[
|
|
|
|
|
"network_diameter",
|
|
|
|
|
"msg_count",
|
|
|
|
|
"min_latency",
|
|
|
|
|
"avg_latency",
|
|
|
|
|
"median_latency",
|
|
|
|
|
"max_latency",
|
|
|
|
|
"min_latency_msg_id",
|
|
|
|
|
"min_latency_msg_persistent_latency_ms",
|
|
|
|
|
"min_latency_msg_persistent_queue_sizes",
|
|
|
|
|
"min_latency_msg_temporal_latency_ms",
|
|
|
|
|
"min_latency_msg_temporal_queue_sizes",
|
|
|
|
|
"max_latency_msg_id",
|
|
|
|
|
"max_latency_msg_persistent_latency_ms",
|
|
|
|
|
"max_latency_msg_persistent_queue_sizes",
|
|
|
|
|
"max_latency_msg_temporal_latency_ms",
|
|
|
|
|
"max_latency_msg_temporal_queue_sizes",
|
|
|
|
|
"min_bandwidth_kbps",
|
|
|
|
|
"avg_bandwidth_kbps",
|
|
|
|
|
"max_bandwidth_kbps",
|
|
|
|
|
]
|
2024-12-20 19:33:47 +09:00
|
|
|
)
|
2024-12-21 21:46:00 +09:00
|
|
|
|
|
|
|
|
for idx, log_path in enumerate(log_paths):
|
|
|
|
|
csv_row = []
|
|
|
|
|
csv_row.append(topology_result(log_path)["diameter"])
|
|
|
|
|
|
|
|
|
|
message_storage, node_storage = latency.parse_record_stream(
|
|
|
|
|
mixlog.get_input_stream(log_path)
|
2024-12-20 18:59:20 +09:00
|
|
|
)
|
2024-12-21 21:46:00 +09:00
|
|
|
with open(f"{log_dir}/msgs-{idx}.json", "w") as file:
|
|
|
|
|
json.dump(
|
|
|
|
|
{msg_id: asdict(msg) for msg_id, msg in message_storage.items()},
|
|
|
|
|
file,
|
|
|
|
|
indent=2,
|
|
|
|
|
)
|
|
|
|
|
with open(f"{log_dir}/nodes-{idx}.json", "w") as file:
|
|
|
|
|
json.dump(node_storage.to_dict(), file, indent=2)
|
2024-12-20 18:59:20 +09:00
|
|
|
|
2024-12-21 21:46:00 +09:00
|
|
|
latency_analysis = latency.LatencyAnalysis.build(
|
|
|
|
|
message_storage, node_storage, STEP_DURATION_MS
|
|
|
|
|
)
|
|
|
|
|
csv_row.append(latency_analysis.total_complete_messages)
|
|
|
|
|
csv_row.append(float(latency_analysis.min_latency_ms) / 1000.0)
|
|
|
|
|
csv_row.append(float(latency_analysis.avg_latency_ms) / 1000.0)
|
|
|
|
|
csv_row.append(float(latency_analysis.median_latency_ms) / 1000.0)
|
|
|
|
|
csv_row.append(float(latency_analysis.max_latency_ms) / 1000.0)
|
|
|
|
|
csv_row.append(latency_analysis.min_latency_analysis.message_id)
|
|
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(
|
|
|
|
|
str,
|
|
|
|
|
[
|
|
|
|
|
ms / 1000.0
|
|
|
|
|
for ms in latency_analysis.min_latency_analysis.persistent_latencies_ms
|
|
|
|
|
],
|
|
|
|
|
)
|
2024-12-21 21:43:54 +09:00
|
|
|
)
|
2024-12-21 17:47:57 +09:00
|
|
|
)
|
2024-12-21 21:46:00 +09:00
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(str, latency_analysis.min_latency_analysis.persistent_queue_sizes)
|
2024-12-21 21:43:54 +09:00
|
|
|
)
|
|
|
|
|
)
|
2024-12-21 21:46:00 +09:00
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(
|
|
|
|
|
str,
|
|
|
|
|
[
|
|
|
|
|
ms / 1000.0
|
|
|
|
|
for ms in latency_analysis.min_latency_analysis.temporal_latencies_ms
|
|
|
|
|
],
|
|
|
|
|
)
|
2024-12-21 21:43:54 +09:00
|
|
|
)
|
2024-12-21 17:47:57 +09:00
|
|
|
)
|
2024-12-21 21:46:00 +09:00
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(str, latency_analysis.min_latency_analysis.temporal_queue_sizes)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
csv_row.append(latency_analysis.max_latency_analysis.message_id)
|
|
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(
|
|
|
|
|
str,
|
|
|
|
|
[
|
|
|
|
|
ms / 1000.0
|
|
|
|
|
for ms in latency_analysis.max_latency_analysis.persistent_latencies_ms
|
|
|
|
|
],
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(str, latency_analysis.max_latency_analysis.persistent_queue_sizes)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(
|
|
|
|
|
str,
|
|
|
|
|
[
|
|
|
|
|
ms / 1000.0
|
|
|
|
|
for ms in latency_analysis.max_latency_analysis.temporal_latencies_ms
|
|
|
|
|
],
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
csv_row.append(
|
|
|
|
|
",".join(
|
|
|
|
|
map(str, latency_analysis.max_latency_analysis.temporal_queue_sizes)
|
2024-12-21 21:43:54 +09:00
|
|
|
)
|
|
|
|
|
)
|
2024-12-19 14:14:40 +09:00
|
|
|
|
2024-12-21 21:46:00 +09:00
|
|
|
bandwidth_res = bandwidth_result(log_path)
|
|
|
|
|
csv_row.append(bandwidth_res["min"] * 8 / 1000.0)
|
|
|
|
|
csv_row.append(bandwidth_res["avg"] * 8 / 1000.0)
|
|
|
|
|
csv_row.append(bandwidth_res["max"] * 8 / 1000.0)
|
2024-12-19 14:14:40 +09:00
|
|
|
|
2024-12-21 21:46:00 +09:00
|
|
|
csv_writer.writerow(csv_row)
|
2024-12-21 21:48:54 +09:00
|
|
|
|
|
|
|
|
print(f"The outputs have been successfully written to {file.name}")
|