2025-08-04 14:11:36 +02:00

265 lines
8.0 KiB
Plaintext

//test
pragma circom 2.1.9;
include "../hash_bn/poseidon2_hash.circom";
include "../ledger/notes.circom";
include "../ledger/merkle.circom";
include "../misc/comparator.circom";
include "../circomlib/circuits/bitify.circom";
include "../misc/constants.circom";
template ticket_calculator(){
signal input epoch_nonce;
signal input slot;
signal input note_id;
signal input secret_key;
signal output out;
component hash = Poseidon2_hash(5);
component dst = LEAD_V1();
hash.inp[0] <== dst.out;
hash.inp[1] <== epoch_nonce;
hash.inp[2] <== slot;
hash.inp[3] <== note_id;
hash.inp[4] <== secret_key;
out <== hash.out;
}
template derive_secret_key(){
signal input starting_slot;
signal input secrets_root;
signal output out;
component hash = Poseidon2_hash(3);
component dst = NOMOS_POL_SK_V1();
hash.inp[0] <== dst.out;
hash.inp[1] <== starting_slot;
hash.inp[2] <== secrets_root;
out <== hash.out;
}
template derive_entropy(){
signal input slot;
signal input note_id;
signal input secret_key;
signal output out;
component hash = Poseidon2_hash(4);
component dst = NOMOS_NONCE_CONTRIB_V1();
hash.inp[0] <== dst.out;
hash.inp[1] <== slot;
hash.inp[2] <== note_id;
hash.inp[3] <== secret_key;
out <== hash.out;
}
template would_win_leadership(secret_depth){
signal input slot;
signal input epoch_nonce;
signal input t0;
signal input t1;
signal input slot_secret;
signal input slot_secret_path[secret_depth];
//Part of the note id proof of membership to prove aged
signal input aged_nodes[32];
signal input aged_selectors[32]; // must be bits
signal input aged_root;
//Used to derive the note identifier
signal input transaction_hash;
signal input output_number;
//Part of the secret key
signal input starting_slot;
signal input secrets_root;
// The winning note value
signal input value;
signal output out;
signal output note_identifier;
signal output secret_key;
// Derive the secret key
component sk = derive_secret_key();
sk.starting_slot <== starting_slot;
sk.secrets_root <== secrets_root;
// Derive the public key from the secret key
component pk = derive_public_key();
pk.secret_key <== sk.out;
// Derive the note id
component note_id = Poseidon2_hash(5);
component dst_note_id = NOMOS_NOTE_ID_V1();
note_id.inp[0] <== dst_note_id.out;
note_id.inp[1] <== transaction_hash;
note_id.inp[2] <== output_number;
note_id.inp[3] <== value;
note_id.inp[4] <== pk.out;
// Check the note ID is aged enough
//First check selectors are indeed bits
for(var i = 0; i < 32; i++){
aged_selectors[i] * (1 - aged_selectors[i]) === 0;
}
//Then check the proof of membership
component aged_membership = proof_of_membership(32);
for(var i = 0; i < 32; i++){
aged_membership.nodes[i] <== aged_nodes[i];
aged_membership.selector[i] <== aged_selectors[i];
}
aged_membership.root <== aged_root;
aged_membership.leaf <== note_id.out;
// Compute the lottery ticket
component ticket = ticket_calculator();
ticket.epoch_nonce <== epoch_nonce;
ticket.slot <== slot;
ticket.note_id <== note_id.out;
ticket.secret_key <== sk.out;
// Compute the lottery threshold
signal intermediate;
signal threshold;
intermediate <== t1 * value;
threshold <== value * (t0 + intermediate);
// Check that the ticket is winning
component winning = FullLessThan();
winning.a <== ticket.out;
winning.b <== threshold;
// Check the knowledge of the secret at position slot - starting_slot
// Verify that the substraction wont underflow (starting_slot < slot)
component checker = SafeLessEqThan(252);
checker.in[0] <== starting_slot;
checker.in[1] <== slot;
// Compute the positions related to slot - starting_slot (and make sure it's 25 bits)
component bits = Num2Bits(secret_depth);
bits.in <== slot - starting_slot;
// Check the membership of the secret_slot against the secrets_root
component secret_membership = proof_of_membership(secret_depth);
for(var i =0; i<secret_depth; i++){
secret_membership.nodes[i] <== slot_secret_path[i];
secret_membership.selector[i] <== bits.out[secret_depth-1-i];
}
secret_membership.root <== secrets_root;
secret_membership.leaf <== slot_secret;
// Check that every constraint holds
signal intermediate_out[2];
intermediate_out[0] <== aged_membership.out * winning.out;
intermediate_out[1] <== checker.out * secret_membership.out;
out <== intermediate_out[0] * intermediate_out[1];
note_identifier <== note_id.out;
secret_key <== sk.out;
}
template proof_of_leadership(secret_depth){
signal input slot;
signal input epoch_nonce;
signal input t0;
signal input t1;
signal input slot_secret;
signal input slot_secret_path[secret_depth];
//Part of the note id proof of membership to prove aged
signal input aged_nodes[32];
signal input aged_selectors[32]; // must be bits
signal input aged_root;
//Used to derive the note identifier
signal input transaction_hash;
signal input output_number;
//Part of the note id proof of membership to prove it's unspent
signal input latest_nodes[32];
signal input latest_selectors[32]; // must be bits
signal input latest_root;
//Part of the secret key
signal input starting_slot;
signal input secrets_root;
// The winning note. The unit is supposed to be NMO and the ZoneID is MANTLE
signal input value;
// Verify the note is winning the lottery
component lottery_checker = would_win_leadership(secret_depth);
lottery_checker.slot <== slot;
lottery_checker.epoch_nonce <== epoch_nonce;
lottery_checker.t0 <== t0;
lottery_checker.t1 <== t1;
lottery_checker.slot_secret <== slot_secret;
for(var i = 0; i < secret_depth; i++){
lottery_checker.slot_secret_path[i] <== slot_secret_path[i];
}
for(var i = 0; i < 32; i++){
lottery_checker.aged_nodes[i] <== aged_nodes[i];
lottery_checker.aged_selectors[i] <== aged_selectors[i];
}
lottery_checker.aged_root <== aged_root;
lottery_checker.transaction_hash <== transaction_hash;
lottery_checker.output_number <== output_number;
lottery_checker.starting_slot <== starting_slot;
lottery_checker.secrets_root <== secrets_root;
lottery_checker.value <== value;
// One time signing key used to sign the block proposal and the block
signal input one_time_key_part_one;
signal input one_time_key_part_two;
//Avoid the circom optimisation that removes unused public input
signal dummy_one;
signal dummy_two;
dummy_one <== one_time_key_part_one * one_time_key_part_one;
dummy_two <== one_time_key_part_two * one_time_key_part_two;
signal output entropy_contrib;
// Check that the note is unspent
//First check selectors are indeed bits
for(var i = 0; i < 32; i++){
latest_selectors[i] * (1 - latest_selectors[i]) === 0;
}
//Then check the note id is in the latest ledger state
component unspent_membership = proof_of_membership(32);
for(var i = 0; i < 32; i++){
unspent_membership.nodes[i] <== latest_nodes[i];
unspent_membership.selector[i] <== latest_selectors[i];
}
unspent_membership.root <== latest_root;
unspent_membership.leaf <== lottery_checker.note_identifier;
lottery_checker.out * unspent_membership.out === 1;
// Compute the entropy contribution
component entropy = derive_entropy();
entropy.slot <== slot;
entropy.note_id <== lottery_checker.note_identifier;
entropy.secret_key <== lottery_checker.secret_key;
entropy_contrib <== entropy.out;
}
component main {public [slot,epoch_nonce,t0,t1,aged_root,latest_root,one_time_key_part_one,one_time_key_part_two]}= proof_of_leadership(25);