244 lines
7.7 KiB
Plaintext

//test
pragma circom 2.1.9;
include "../hash_bn/poseidon2_hash.circom";
include "../ledger/notes.circom";
include "../misc/comparator.circom";
include "../circomlib/circuits/bitify.circom";
include "../misc/constants.circom";
template ticket_calculator(){
signal input epoch_nonce;
signal input slot;
signal input commitment;
signal input secret_key;
signal output out;
component hash = Poseidon2_hash(5);
component dst = LEAD();
hash.inp[0] <== dst.out;
hash.inp[1] <== epoch_nonce;
hash.inp[2] <== slot;
hash.inp[3] <== commitment;
hash.inp[4] <== secret_key;
out <== hash.out;
}
template derive_secret_key(){
signal input starting_slot;
signal input secrets_root;
signal output out;
component hash = Poseidon2_hash(3);
component dst = NOMOS_POL_SK();
hash.inp[0] <== dst.out;
hash.inp[1] <== starting_slot;
hash.inp[2] <== secrets_root;
out <== hash.out;
}
template derive_entropy(){
signal input slot;
signal input commitment;
signal input secret_key;
signal output out;
component hash = Poseidon2_hash(4);
component dst = NOMOS_NONCE_CONTRIB();
hash.inp[0] <== dst.out;
hash.inp[1] <== slot;
hash.inp[2] <== commitment;
hash.inp[3] <== secret_key;
out <== hash.out;
}
template proof_of_leadership(){
signal input selector; // 0 if the note is shielded and 1 if the note is unshielded
// Check that the selector is indeed a bit
selector * (1- selector) === 0;
signal input slot;
signal input epoch_nonce;
signal input t0;
signal input t1;
signal input slot_secret;
signal input slot_secret_path[25];
//Part of the commitment or note id proof of membership to prove aged
signal input aged_nodes[32];
signal input aged_selectors[32]; // must be bits
signal input commitments_aged_root;
signal input note_id_aged_root;
//Used to derive the note identifier, it can be dumb inputs if it's a shielded note
signal input transaction_hash;
signal input output_number;
//Part of the nullifer proof of non-membership/commitment proof of membership to prove the note is unspent
signal input nf_previous; // Can be mocked and set to any value if selector == 1 as long as previous < nullifier < next
signal input nf_next;
signal input unspent_nodes[32];
signal input unspent_selectors[32]; // must be bits
signal input nf_unspent_root;
signal input note_id_unspent_root;
//Part of the secret key
signal input starting_slot;
signal input secrets_root;
// The winning note. The unit is supposed to be NMO and the ZoneID is PAYMENT
signal input state;
signal input value;
signal input nonce;
signal input one_time_key;
//Avoid the circom optimisation that removes unused public input
signal dummy;
dummy <== one_time_key * one_time_key;
signal output entropy_contrib;
// Derive the secret key
component sk = derive_secret_key();
sk.starting_slot <== starting_slot;
sk.secrets_root <== secrets_root;
// Derive the public key from the secret key
component pk = derive_public_key();
pk.secret_key <== sk.out;
// Derive the commitment from the note and the public key
component cm = commitment();
cm.state <== state;
cm.value <== value;
component nmo = NMO();
cm.unit <== nmo.out;
cm.nonce <== nonce;
component staking = STAKING();
cm.zoneID <== staking.out;
cm.public_key <== pk.out;
// Derive the nullifier from the commitment and the secret key
component nf = nullifier();
nf.commitment <== cm.out;
nf.secret_key <== sk.out;
// Derive the note id
component note_id = Poseidon2_hash(4);
component dst_note_id = NOMOS_NOTE_ID();
note_id.inp[0] <== dst_note_id.out;
note_id.inp[1] <== transaction_hash;
note_id.inp[2] <== output_number;
note_id.inp[3] <== cm.out;
// Check commitment membership (is aged enough)
//First check selectors are indeed bits
for(var i = 0; i < 32; i++){
aged_selectors[i] * (1 - aged_selectors[i]) === 0;
}
//Then check the proof of membership
component aged_membership = proof_of_membership(32);
for(var i = 0; i < 32; i++){
aged_membership.nodes[i] <== aged_nodes[i];
aged_membership.selector[i] <== aged_selectors[i];
}
aged_membership.root <== (note_id_aged_root - commitments_aged_root) * selector + commitments_aged_root;
aged_membership.leaf <== (note_id.out - cm.out) * selector + cm.out;
// Compute the lottery ticket
component ticket = ticket_calculator();
ticket.epoch_nonce <== epoch_nonce;
ticket.slot <== slot;
ticket.commitment <== cm.out;
ticket.secret_key <== sk.out;
// Compute the lottery threshold
signal intermediate;
signal threshold;
intermediate <== t1 * value;
threshold <== value * (t0 + intermediate);
// Check that the ticket is winning
component winning = FullLessThan();
winning.a <== ticket.out;
winning.b <== threshold;
winning.out === 1;
// Check that the note is unspent
//First check selectors are indeed bits
for(var i = 0; i < 32; i++){
unspent_selectors[i] * (1 - unspent_selectors[i]) === 0;
}
//Then check the proof of membership (that the nullifier leaf is in the set or that the note identifier is)
component unspent_membership = proof_of_membership(32);
for(var i = 0; i < 32; i++){
unspent_membership.nodes[i] <== unspent_nodes[i];
unspent_membership.selector[i] <== unspent_selectors[i];
}
unspent_membership.root <== (note_id_unspent_root - nf_unspent_root) * selector + nf_unspent_root;
//Compute the leaf if it's a private note representing previous nf pointing to next in the IMT
component hash = Poseidon2_hash(2);
hash.inp[0] <== nf_previous;
hash.inp[1] <== nf_next;
unspent_membership.leaf <== (note_id.out - hash.out) * selector + hash.out; // the leaf is then either the note identifier or the leaf computed before
// Check that nullifier stictly falls between previous and next if the note is private.
// If the note is public previous and next can be any values such that previous < nullifier < next
component comparator[2];
comparator[0] = SafeFullLessThan();
comparator[0].a <== nf_previous;
comparator[0].b <== nf.out;
comparator[0].out === 1;
comparator[1] = SafeFullLessThan();
comparator[1].a <== nf.out;
comparator[1].b <== nf_next;
comparator[1].out === 1;
// Check the knowledge of the secret at position slot - starting_slot
// Verify that the substraction wont underflow (starting_slot < slot)
component checker = SafeLessEqThan(252);
checker.in[0] <== starting_slot;
checker.in[1] <== slot;
checker.out === 1;
// Compute the positions related to slot - starting_slot
component bits = Num2Bits(25);
bits.in <== slot - starting_slot;
// Check the membership of the secret_slot against the secrets_root
component secret_membership = proof_of_membership(25);
for(var i =0; i<25; i++){
secret_membership.nodes[i] <== slot_secret_path[i];
secret_membership.selector[i] <== bits.out[24-i];
}
secret_membership.root <== secrets_root;
secret_membership.leaf <== slot_secret;
// Compute the entropy contribution
component entropy = derive_entropy();
entropy.slot <== slot;
entropy.commitment <== cm.out;
entropy.secret_key <== sk.out;
entropy_contrib <== entropy.out;
}
component main {public [slot,epoch_nonce,t0,t1,commitments_aged_root,note_id_aged_root,nf_unspent_root,note_id_unspent_root,one_time_key]}= proof_of_leadership();