remove shielded sets from circom circuits

This commit is contained in:
thomaslavaur 2025-04-29 11:32:56 +02:00
parent 83d4a7dbee
commit 30ab8f7eda
6 changed files with 36 additions and 613 deletions

View File

@ -204,14 +204,13 @@ def PoseidonSponge(data, capacity, output_len):
R = RealField(500) #Real numbers with precision 500 bits
if len(sys.argv) != Integer(5):
print("Usage: <script> <epoch_nonce> <slot_number> <total_stake> <public or private>")
if len(sys.argv) != Integer(4):
print("Usage: <script> <epoch_nonce> <slot_number> <total_stake>")
exit()
epoch_nonce = int(sys.argv[Integer(1)])
slot_number = int(sys.argv[Integer(2)])
total_stake = int(sys.argv[Integer(3)])
anonymity = str(sys.argv[Integer(4)])
if epoch_nonce >= p:
print("epoch nonce must be less than p")
@ -258,48 +257,26 @@ note_id = poseidon2_hash([F(3421010384451055699723071944416976463079278762188835
aged_nodes = [F(randrange(0,p,1)) for i in range(32)]
aged_selectors = randrange(0,2**32,1)
aged_selectors = format(aged_selectors,'032b')
cm_aged_root = note_cm
aged_root = note_id
for i in range(32):
if int(aged_selectors[31-i]) == 0:
cm_aged_root = poseidon2_hash([cm_aged_root,aged_nodes[i]])
aged_root = poseidon2_hash([aged_root,aged_nodes[i]])
else:
cm_aged_root = poseidon2_hash([aged_nodes[i],cm_aged_root])
note_id_aged_root = note_id
for i in range(32):
if int(aged_selectors[31-i]) == 0:
note_id_aged_root = poseidon2_hash([note_id_aged_root,aged_nodes[i]])
else:
note_id_aged_root = poseidon2_hash([aged_nodes[i],note_id_aged_root])
aged_root = poseidon2_hash([aged_nodes[i],aged_root])
unspent_nodes = [F(randrange(0,p,1)) for i in range(32)]
unspent_selectors = randrange(0,2**32,1)
unspent_selectors = format(unspent_selectors,'032b')
note_id_unspent_root = note_id
latest_root = note_id
for i in range(32):
if int(unspent_selectors[31-i]) == 0:
note_id_unspent_root = poseidon2_hash([note_id_unspent_root,unspent_nodes[i]])
latest_root = poseidon2_hash([latest_root,unspent_nodes[i]])
else:
note_id_unspent_root = poseidon2_hash([unspent_nodes[i],note_id_unspent_root])
note_nf = poseidon2_hash([F(310945536431723660304787929213143698356852257431717126117833288836338828411),note_cm,sk])
nf_previous = F(randrange(0,note_nf,1))
nf_next = F(randrange(note_nf+1,p,1))
nf_root = poseidon2_hash([nf_previous, nf_next])
for i in range(32):
if int(unspent_selectors[31-i]) == 0:
nf_root = poseidon2_hash([nf_root,unspent_nodes[i]])
else:
nf_root = poseidon2_hash([unspent_nodes[i],nf_root])
latest_root = poseidon2_hash([unspent_nodes[i],latest_root])
with open("input.json", "w") as file:
file.write('{\n\t"slot":\t\t\t\t\t\t"'+str(slot_number)+'",')
if anonymity == "public":
file.write('\n\t"selector":\t\t\t\t\t\t"'+str(1)+'",')
if anonymity == "private":
file.write('\n\t"selector":\t\t\t\t\t\t"'+str(0)+'",')
file.write('\n\t"epoch_nonce":\t\t\t\t\t\t"'+str(epoch_nonce)+'",')
file.write('\n\t"t0" :\t\t\t\t\t\t"'+str(t0)+'",')
file.write('\n\t"t1" :\t\t\t\t\t\t"'+str(t1)+'",')
@ -332,13 +309,10 @@ with open("input.json", "w") as file:
file.write('],')
else:
file.write(',')
file.write('\n\t"commitments_aged_root" :\t\t\t\t"'+str(cm_aged_root)+'",')
file.write('\n\t"note_id_aged_root" :\t\t\t\t"'+str(note_id_aged_root)+'",')
file.write('\n\t"aged_root" :\t\t\t\t"'+str(aged_root)+'",')
file.write('\n\t"transaction_hash" :\t\t\t\t"'+str(tx_hash)+'",')
file.write('\n\t"output_number" :\t\t\t\t"'+str(output_number)+'",')
file.write('\n\t"nf_previous" :\t\t\t\t"'+str(nf_previous)+'",')
file.write('\n\t"nf_next" :\t\t\t\t"'+str(nf_next)+'",')
file.write('\n\t"unspent_nodes" :\t\t\t\t\t[')
file.write('\n\t"latest_nodes" :\t\t\t\t\t[')
for i in range(32):
file.write('"')
file.write(str(unspent_nodes[i]))
@ -347,7 +321,7 @@ with open("input.json", "w") as file:
file.write('],')
else:
file.write(',')
file.write('\n\t"unspent_selectors" :\t\t\t\t\t[')
file.write('\n\t"latest_selectors" :\t\t\t\t\t[')
for i in range(32):
file.write('"')
file.write(str(unspent_selectors[i]))
@ -356,8 +330,7 @@ with open("input.json", "w") as file:
file.write('],')
else:
file.write(',')
file.write('\n\t"note_id_unspent_root" :\t\t\t\t"'+str(note_id_unspent_root)+'",')
file.write('\n\t"nf_unspent_root" :\t\t\t\t"'+str(nf_root)+'",')
file.write('\n\t"latest_root" :\t\t\t\t"'+str(latest_root)+'",')
file.write('\n\t"starting_slot" :\t\t\t\t"'+str(starting_slot)+'",')
file.write('\n\t"secrets_root" :\t\t\t\t"'+str(secret_root)+'",')
file.write('\n\t"state" :\t\t\t\t"'+str(state)+'",')

View File

@ -1,395 +0,0 @@
#!/usr/bin/sage
# -*- mode: python ; -*-
from sage.all import *
p = 21888242871839275222246405745257275088548364400416034343698204186575808495617
F = FiniteField(p)
def poseidon2_hash(data):
return PoseidonSponge(data,2,1)[0]
def Poseidon2_sponge_hash_rate_1(data, n):
return PoseidonSponge(data,3,2,n,1)
def Poseidon2_sponge_hash_rate_2(data, n):
return PoseidonSponge(data,3,1,n,1)
def SBox(inp):
return inp**5
def InternalRound(inp, i):
round_consts = [ 0x15ce7e5ae220e8623a40b3a3b22d441eff0c9be1ae1d32f1b777af84eea7e38c
, 0x1bf60ac8bfff0f631983c93e218ca0d4a4059c254b4299b1d9984a07edccfaf0
, 0x0fab0c9387cb2bec9dc11b2951088b9e1e1d2978542fc131f74a8f8fdac95b40
, 0x07d085a48750738019784663bccd460656dc62c1b18964a0d27a5bd0c27ee453
, 0x10d57b1fad99da9d3fe16cf7f5dae05be844f67b2e7db3472a2e96e167578bc4
, 0x0c36c40f7bd1934b7d5525031467aa39aeaea461996a70eda5a2a704e1733bb0
, 0x0e4b65a0f3e1f9d3166a2145063c999bd08a4679676d765f4d11f97ed5c080ae
, 0x1ce5561061120d5c7ea09da2528c4c041b9ad0f05d655f38b10d79878b69f29d
, 0x2d323f651c3da8f0e0754391a10fa111b25dfa00471edf5493c44dfc3f28add6
, 0x05a0741ee5bdc3e099fd6bdad9a0865bc9ceecd13ea4e702e536dd370b8f1953
, 0x176a2ec4746fc0e0eca9e5e11d6facaee05524a92e5785c8b8161780a4435136
, 0x0691faf0f42a9ed97629b1ae0dc7f1b019c06dd852cb6efe57f7eeb1aa865aef
, 0x0e46cf138dad09d61b9a7cab95a23b5c8cb276874f3715598bacb55d5ad271de
, 0x0f18c3d95bac1ac424160d240cdffc2c44f7b6315ba65ed3ff2eff5b3e48b4f2
, 0x2eea6af14b592ec45a4119ac1e6e6f0312ecd090a096e340d472283e543ddff7
, 0x06b0d7a8f4ce97d049ae994139f5f71dca4899d4f1cd3dd83a32a89a58c0a8e6
, 0x019df0b9828eed5892dd55c1ad6408196f6293d600ef4491703a1b37e119ba8e
, 0x08ca5e3c93817cdb1c2b2a12d02c779d74c1bb12b6668f3ab3ddd7837f3a4a00
, 0x28382d747e3fd6cb2e0d8e8edd79c5313eed307a3517c11046245b1476e4f701
, 0x0ca89aecd5675b77c8271765da98cfcb6875b3053d4742c9ff502861bd16ad28
, 0x19046bc0b03ca90802ec83f212001e7ffd7f9224cfffae523451deb52eab3787
, 0x036fd7dfa1c05110b3428e6abcc43e1de9abba915320c4a600f843bfb676ca51
, 0x08f0a7abcb1a2f6595a9b7380c5028e3999db4fe5cb21892e5bb5cb11a7757ba
, 0x0b614acc1ce3fbe9048f8385e4ee24c3843deea186bacea3c904c9f6340ad8cb
, 0x00b2d98c5d988f9b41f2c98e017fc954a6ae423b2261575941f8eac8835d985c
, 0x1457f18555b7973ba5b311d57ec5d77e936980b97f5973875f1f7cc765a4fc95
, 0x002b453debc1bee525cb751bc10641a6b86f847d696418cf1144950982591bfa
, 0x0c2af1abcc6ece77218315d2af445ccbfc6647b7af2510682882cc792c6bb8cf
, 0x0e2825d9eb84b59902a1adb49ac0c2c291dee7c45d2e8c30369a4d595039e8ad
, 0x297e2e86a8c672d39f3343b8dfce7a6f20f3571bfd5c8a28e3905aa2dcfeca44
, 0x00d397281d902e49ec6504ba9186e806db9ad4fc8f86e7277aa7f1467eb6f9de
, 0x2fb7c89c372d7e2050e7377ed471000c73544a2b9fd66557f3577c09cac98b4b
, 0x16125247be4387a8c3e62490167f0cffdba02eda4f018d0b40639a13bb0cfef9
, 0x2291fd9d442f2d9b97ab22f7d4d52c2a82e41f852cf620b144612650a39e26e8
, 0x1eec61f16a275ae238540feaeeadfec56d32171b1cc393729d06f37f476fde71
, 0x259ce871ba5dacbb48d8aed3d8513eef51558dc0b360f28c1a15dbfc5e7f6ca2
, 0x2d3376a14ddbf95587e2f7567ff04fe13a3c7cb17363c8b9c5dd1d9262a210cb
, 0x13b843d9f65f4cddd7ce10d9cad9b8b99ac5e9a8c4269288173a91c0f3c3b084
, 0x0b52e9b2f1aa9fd204e4a42c481cc76c704783e34114b8e93e026a50fa9764e8
, 0x1fd083229276c7f27d3ad941476b394ff37bd44d3a1e9caca1400d9077a2056c
, 0x22743c328a6283f3ba7379af22c684c498568fd7ad9fad5151368c913197cbd9
, 0x043007aefd9741070d95caaaba0c1b070e4eec8eef8c1e512c8e579c6ed64f76
, 0x17ab175144f64bc843074f6b3a0c57c5dd2c954af8723c029ee642539496a7b3
, 0x2befcad3d53fba5eeef8cae9668fed5c1e9e596a46e8458e218f7a665fddf4eb
, 0x15151c4116d97de74bfa6ca3178f73c8fe8fe612c70c6f85a7a1551942cb71cc
, 0x2ac40bf6c3176300a6835d5fc7cc4fd5e5d299fb1baa86487268ec1b9eedfa97
, 0x0f151de1f01b4e24ffe04279318f0a68efabb485188f191e37e6915ff6059f6e
, 0x2e43dffc34537535182aebac1ad7bf0a5533b88f65f9652f0ad584e2ffc4dd1f
, 0x2ebabc2c37ef53d8b13b24a2a2b729d536735f58956125a3876da0664c2442d7
, 0x0dc3beceb34e49f5ad7226dd202c5cf879dffcc9a6dd32a300e8f2a4b59edf03
, 0x2f1ddeccce83adf68779c53b639871a8f81d4d00aefe1e812efce8ec999d457d
, 0x1f63e41280ff5c021715d52b19780298ed8bd3d5eb506316b527e24149d4d4f1
, 0x1b8c1252a5888f8cb2672effb5df49c633d3fd7183271488a1c40d0f88e7636e
, 0x0f45697130f5498e2940568ef0d5e9e16b1095a6cdbb6411df20a973c605e70b
, 0x0780ccc403cdd68983acbd34cda41cacfb2cf911a93076bc25587b4b0aed4929
, 0x238d26ca97c691591e929f32199a643550f325f23a85d420080b289d7cecc9d4
]
sb = SBox(inp[0] + round_consts[i])
out = [F(0) for i in range(3)]
out[0] = 2*sb + inp[1] + inp[2];
out[1] = sb + 2*inp[1] + inp[2];
out[2] = sb + inp[1] + 3*inp[2];
return out
def ExternalRound(inp, i):
out = [F(0) for j in range(3)]
round_consts = [ [ F(0x2c4c51fd1bb9567c27e99f5712b49e0574178b41b6f0a476cddc41d242cf2b43)
, F(0x1c5f8d18acb9c61ec6fcbfcda5356f1b3fdee7dc22c99a5b73a2750e5b054104)
, F(0x2d3c1988b4541e4c045595b8d574e98a7c2820314a82e67a4e380f1c4541ba90 )
]
, [ F(0x052547dc9e6d936cab6680372f1734c39f490d0cb970e2077c82f7e4172943d3)
, F(0x29d967f4002adcbb5a6037d644d36db91f591b088f69d9b4257694f5f9456bc2)
, F(0x0350084b8305b91c426c25aeeecafc83fc5feec44b9636cb3b17d2121ec5b88a)
]
, [ F(0x1815d1e52a8196127530cc1e79f07a0ccd815fb5d94d070631f89f6c724d4cbe)
, F(0x17b5ba882530af5d70466e2b434b0ccb15b7a8c0138d64455281e7724a066272)
, F(0x1c859b60226b443767b73cd1b08823620de310bc49ea48662626014cea449aee)
]
, [ F(0x1b26e7f0ac7dd8b64c2f7a1904c958bb48d2635478a90d926f5ff2364effab37)
, F(0x2da7f36850e6c377bdcdd380efd9e7c419555d3062b0997952dfbe5c54b1a22e)
, F(0x17803c56450e74bc6c7ff97275390c017f682db11f3f4ca6e1f714efdfb9bd66)
]
, [ F(0x25672a14b5d085e31a30a7e1d5675ebfab034fb04dc2ec5e544887523f98dede)
, F(0x0cf702434b891e1b2f1d71883506d68cdb1be36fa125674a3019647b3a98accd)
, F(0x1837e75235ff5d112a5eddf7a4939448748339e7b5f2de683cf0c0ae98bdfbb3)
]
, [ F(0x1cd8a14cff3a61f04197a083c6485581a7d836941f6832704837a24b2d15613a)
, F(0x266f6d85be0cef2ece525ba6a54b647ff789785069882772e6cac8131eecc1e4)
, F(0x0538fde2183c3f5833ecd9e07edf30fe977d28dd6f246d7960889d9928b506b3)
]
, [ F(0x07a0693ff41476abb4664f3442596aa8399fdccf245d65882fce9a37c268aa04)
, F(0x11eb49b07d33de2bd60ea68e7f652beda15644ed7855ee5a45763b576d216e8e)
, F(0x08f8887da6ce51a8c06041f64e22697895f34bacb8c0a39ec12bf597f7c67cfc)
]
, [ F(0x2a912ec610191eb7662f86a52cc64c0122bd5ba762e1db8da79b5949fdd38092)
, F(0x2031d7fd91b80857aa1fef64e23cfad9a9ba8fe8c8d09de92b1edb592a44c290)
, F(0x0f81ebce43c47711751fa64d6c007221016d485641c28c507d04fd3dc7fba1d2)
]
]
sb = [F(0) for j in range(3)]
for j in range(3):
sb[j] = SBox(F(inp[j] + round_consts[i][j]))
out = [F(0) for j in range(3)]
out[0] = 2*sb[0] + sb[1] + sb[2]
out[1] = sb[0] + 2*sb[1] + sb[2]
out[2] = sb[0]+ sb[1] + 2*sb[2]
return out
def LinearLayer(inp):
out = [F(0) for i in range(3)]
out[0] = 2*inp[0] + inp[1] + inp[2]
out[1] = inp[0] + 2*inp[1] + inp[2]
out[2] = inp[0] + inp[1] + 2*inp[2]
return out
def Permutation(inp):
out = [F(0) for i in range(3)]
state = LinearLayer(inp)
for k in range(4):
state = ExternalRound(state, k)
for k in range(56):
state = InternalRound(state, k)
for k in range(4):
state = ExternalRound(state, k+4)
return state
def Compression(inp):
return Permutation([inp[0],inp[1],F(0)])
def PoseidonSponge(data, capacity, output_len):
rate = 3 - capacity;
output = [F(0) for i in range(output_len)]
assert( capacity > 0 )
assert( rate > 0 )
assert( capacity < 3 )
assert( rate < 3 )
# round up to rate the input + 1 field element ("10*" padding)
nblocks = ((len(data) + 1) + (rate-1)) // rate;
nout = (output_len + (rate-1)) // rate;
padded_len = nblocks * rate;
padded = []
for i in range(len(data)):
padded.append(F(data[i]))
padded.append(F(1))
for i in range(len(data)+1,padded_len):
padded.append(F(0))
civ = F(2**64 + 256*3 + rate)
state = [F(0),F(0),F(civ)]
sorbed = [F(0) for j in range(rate)]
for m in range(nblocks):
for i in range(rate):
a = state[i]
b = padded[m*rate+i]
sorbed[i] = a + b
state = Permutation(sorbed[0:rate] + state[rate:3])
q = min(rate, output_len)
for i in range(q):
output[i] = state[i]
out_ptr = rate
for n in range(1,nout):
state[nblocks+n] = Permutation(state[nblocks+n-1])
q = min(rate, output_len-out_ptr)
for i in range(q):
output[out_ptr+i] = state[nblocks+n][i]
out_ptr += rate
return output
R = RealField(500) #Real numbers with precision 500 bits
if len(sys.argv) != Integer(3):
print("Usage: <script> <maxInputs> <maxOutputs> ")
exit()
maxInputs = int(sys.argv[Integer(1)])
maxOutputs = int(sys.argv[Integer(2)])
value_in = [F(randrange(0,10000,1) )for i in range(maxInputs) ]
unit = F(10779557959052216631390333682740231728667240537997953966056427002575892499162)
state_in = [F(randrange(0,p,1)) for i in range(maxInputs) ]
zone_in = [F(randrange(0,p,1)) for i in range(maxInputs) ]
note_nonce_in = [F(randrange(0,p,1)) for i in range(maxInputs)]
sk_in = [F(randrange(0,p,1)) for i in range(maxInputs)]
pk_in = [ poseidon2_hash([F(355994159511987982411097843485998670968942801951585260613801918349630142543),sk_in[i]]) for i in range(maxInputs) ]
attached_data = F(randrange(0,p,1))
note_cm_in = [poseidon2_hash([F(181645510297841241569044198526601622686169271532834574969543446901055041748),state_in[i],value_in[i],unit,note_nonce_in[i],pk_in[i],zone_in[i]]) for i in range(maxInputs) ]
cm_nodes = [[F(randrange(0,p,1)) for i in range(32)] for j in range(maxInputs) ]
cm_selectors = [format(randrange(0,2**32,1),'032b') for i in range(maxInputs) ]
cm_root = [ note_cm_in[i] for i in range(maxInputs) ]
for j in range(maxInputs):
for i in range(32):
if int(cm_selectors[j][31-i]) == 0:
cm_root[j] = poseidon2_hash([cm_root[j],cm_nodes[j][i]])
else:
cm_root[j] = poseidon2_hash([cm_nodes[j][i],cm_root[j]])
value_out = [F(randrange(0,10000,1) )for i in range(maxOutputs) ]
state_out = [F(randrange(0,p,1)) for i in range(maxOutputs) ]
note_nonce_out = [F(randrange(0,p,1)) for i in range(maxOutputs)]
pk_out = [ F(randrange(0,p,1)) for i in range(maxOutputs)]
zone_out = [F(randrange(0,p,1)) for i in range(maxOutputs)]
is_a_input_note = [F(randrange(0,1,1)) for i in range(maxInputs)]
is_a_output_note = [F(randrange(0,1,1)) for i in range(maxOutputs)]
is_a_input_note[0] = F(1)
is_a_output_note[0] = F(1)
with open("input.json", "w") as file:
file.write('{\n\t"unit_arg_cm" :\t\t\t\t"'+str(0)+'",')
file.write('\n\t"state_in" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(state_in[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"value_in" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(value_in[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"nonce_in" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(note_nonce_in[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"secret_key_in" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(sk_in[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"zoneID_in" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(zone_in[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"cm_nodes" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('\n\t\t\t\t\t\t[')
for j in range(32):
file.write('"')
file.write(str(cm_nodes[i][j]))
file.write('"')
if j == (31):
file.write(']')
else:
file.write(',')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"cm_selectors" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('\n\t\t\t\t\t\t[')
for j in range(32):
file.write('"')
file.write(str(cm_selectors[i][j]))
file.write('"')
if j == (31):
file.write(']')
else:
file.write(',')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"commitments_root" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(cm_root[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"is_a_input_note" :\t\t\t\t\t[')
for i in range(maxInputs):
file.write('"')
file.write(str(is_a_input_note[i]))
file.write('"')
if i == (maxInputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"attached_data" :\t\t\t\t\t\t"'+str(attached_data)+'",')
file.write('\n\t"state_out" :\t\t\t\t\t[')
for i in range(maxOutputs):
file.write('"')
file.write(str(state_out[i]))
file.write('"')
if i == (maxOutputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"value_out" :\t\t\t\t\t[')
for i in range(maxOutputs):
file.write('"')
file.write(str(value_out[i]))
file.write('"')
if i == (maxOutputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"nonce_out" :\t\t\t\t\t[')
for i in range(maxOutputs):
file.write('"')
file.write(str(note_nonce_out[i]))
file.write('"')
if i == (maxOutputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"public_key_out" :\t\t\t\t\t[')
for i in range(maxOutputs):
file.write('"')
file.write(str(pk_out[i]))
file.write('"')
if i == (maxOutputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"is_a_output_note" :\t\t\t\t\t[')
for i in range(maxOutputs):
file.write('"')
file.write(str(is_a_output_note[i]))
file.write('"')
if i == (maxOutputs-1):
file.write('],')
else:
file.write(',')
file.write('\n\t"zoneID_out" :\t\t\t\t\t[')
for i in range(maxOutputs):
file.write('"')
file.write(str(zone_out[i]))
file.write('"')
if i == (maxOutputs-1):
file.write(']}')
else:
file.write(',')

View File

@ -58,11 +58,6 @@ template derive_entropy(){
template proof_of_leadership(){
signal input selector; // 0 if the note is shielded and 1 if the note is unshielded
// Check that the selector is indeed a bit
selector * (1- selector) === 0;
signal input slot;
signal input epoch_nonce;
signal input t0;
@ -70,35 +65,30 @@ template proof_of_leadership(){
signal input slot_secret;
signal input slot_secret_path[25];
//Part of the commitment or note id proof of membership to prove aged
//Part of the note id proof of membership to prove aged
signal input aged_nodes[32];
signal input aged_selectors[32]; // must be bits
signal input commitments_aged_root;
signal input note_id_aged_root;
signal input aged_root;
//Used to derive the note identifier, it can be dumb inputs if it's a shielded note
//Used to derive the note identifier
signal input transaction_hash;
signal input output_number;
//Part of the nullifer proof of non-membership/commitment proof of membership to prove the note is unspent
signal input nf_previous; // Can be mocked and set to any value if selector == 1 as long as previous < nullifier < next
signal input nf_next;
signal input unspent_nodes[32];
signal input unspent_selectors[32]; // must be bits
signal input nf_unspent_root;
signal input note_id_unspent_root;
//Part of the note id proof of membership to prove it's unspent
signal input latest_nodes[32];
signal input latest_selectors[32]; // must be bits
signal input latest_root;
//Part of the secret key
signal input starting_slot;
signal input secrets_root;
// The winning note. The unit is supposed to be NMO and the ZoneID is PAYMENT
// The winning note. The unit is supposed to be NMO and the ZoneID is MANTLE
signal input state;
signal input value;
signal input nonce;
// One time signing key used to sign the block proposal and the block
signal input one_time_key;
//Avoid the circom optimisation that removes unused public input
@ -119,6 +109,7 @@ template proof_of_leadership(){
pk.secret_key <== sk.out;
// Derive the commitment from the note and the public key
component cm = commitment();
cm.state <== state;
@ -130,13 +121,6 @@ template proof_of_leadership(){
cm.zoneID <== staking.out;
cm.public_key <== pk.out;
// Derive the nullifier from the commitment and the secret key
component nf = nullifier();
nf.commitment <== cm.out;
nf.secret_key <== sk.out;
// Derive the note id
component note_id = Poseidon2_hash(4);
component dst_note_id = NOMOS_NOTE_ID();
@ -145,7 +129,8 @@ template proof_of_leadership(){
note_id.inp[2] <== output_number;
note_id.inp[3] <== cm.out;
// Check commitment membership (is aged enough)
// Check the note is aged enough
//First check selectors are indeed bits
for(var i = 0; i < 32; i++){
aged_selectors[i] * (1 - aged_selectors[i]) === 0;
@ -156,8 +141,8 @@ template proof_of_leadership(){
aged_membership.nodes[i] <== aged_nodes[i];
aged_membership.selector[i] <== aged_selectors[i];
}
aged_membership.root <== (note_id_aged_root - commitments_aged_root) * selector + commitments_aged_root;
aged_membership.leaf <== (note_id.out - cm.out) * selector + cm.out;
aged_membership.root <== aged_root;
aged_membership.leaf <== note_id.out;
// Compute the lottery ticket
@ -185,32 +170,16 @@ template proof_of_leadership(){
// Check that the note is unspent
//First check selectors are indeed bits
for(var i = 0; i < 32; i++){
unspent_selectors[i] * (1 - unspent_selectors[i]) === 0;
latest_selectors[i] * (1 - latest_selectors[i]) === 0;
}
//Then check the proof of membership (that the nullifier leaf is in the set or that the note identifier is)
//Then check the note id is in the latest ledger state
component unspent_membership = proof_of_membership(32);
for(var i = 0; i < 32; i++){
unspent_membership.nodes[i] <== unspent_nodes[i];
unspent_membership.selector[i] <== unspent_selectors[i];
unspent_membership.nodes[i] <== latest_nodes[i];
unspent_membership.selector[i] <== latest_selectors[i];
}
unspent_membership.root <== (note_id_unspent_root - nf_unspent_root) * selector + nf_unspent_root;
//Compute the leaf if it's a private note representing previous nf pointing to next in the IMT
component hash = Poseidon2_hash(2);
hash.inp[0] <== nf_previous;
hash.inp[1] <== nf_next;
unspent_membership.leaf <== (note_id.out - hash.out) * selector + hash.out; // the leaf is then either the note identifier or the leaf computed before
// Check that nullifier stictly falls between previous and next if the note is private.
// If the note is public previous and next can be any values such that previous < nullifier < next
component comparator[2];
comparator[0] = SafeFullLessThan();
comparator[0].a <== nf_previous;
comparator[0].b <== nf.out;
comparator[0].out === 1;
comparator[1] = SafeFullLessThan();
comparator[1].a <== nf.out;
comparator[1].b <== nf_next;
comparator[1].out === 1;
unspent_membership.root <== latest_root;
unspent_membership.leaf <== note_id.out;
// Check the knowledge of the secret at position slot - starting_slot
@ -241,4 +210,4 @@ template proof_of_leadership(){
entropy_contrib <== entropy.out;
}
component main {public [slot,epoch_nonce,t0,t1,commitments_aged_root,note_id_aged_root,nf_unspent_root,note_id_unspent_root,one_time_key]}= proof_of_leadership();
component main {public [slot,epoch_nonce,t0,t1,aged_root,latest_root,one_time_key]}= proof_of_leadership();

View File

@ -1,126 +0,0 @@
//test
pragma circom 2.1.9;
include "../ledger/notes.circom";
include "../misc/constants.circom";
template shielded_transaction(maxInputs, maxOutputs){
signal input unit_arg_cm; // Used to derive the unit and make sure the token use a no-op spending covenant.
//consummed notes
// notes themselves
signal input state_in[maxInputs];
signal input value_in[maxInputs];
signal input nonce_in[maxInputs];
signal input secret_key_in[maxInputs];
signal input zoneID_in[maxInputs];
// proof of commitment membership
signal input cm_nodes[maxInputs][32];
signal input cm_selectors[maxInputs][32]; // must be bits
signal input commitments_root[maxInputs];
signal input is_a_input_note[maxInputs]; // Selector to say if note i is a real entry or a dummy input, must be 0 or 1
signal output nullifier[maxInputs]; // /!\ It needs to be checked outside the circuit by the validators
// Padding can be realized by repeating the same note on selector 0 (validators will ignore the nullifier)
//created notes
signal input state_out[maxOutputs];
signal input value_out[maxOutputs];
signal input nonce_out[maxOutputs];
signal input public_key_out[maxOutputs];
signal input zoneID_out[maxOutputs];
signal input is_a_output_note[maxOutputs]; // Selector to say if note i is a real output or a dummy output, must be 0 or 1
signal output commitments[maxOutputs]; // /!\ It needs to be checked outside the circuit by the validators
// Padding can be realized by repeating the same note on selector 0 (validators will ignore the commitment)
signal input attached_data;
signal output balance;
signal output unit; // Disclose the unit of the transaction
//Derive the unit
component derive_unit = derive_unit();
derive_unit.minting_covenant <== 0;
derive_unit.spending_covenant <== 0; // 0 encodes the fact that it's a no-op transfer covenant
derive_unit.burning_covenant <== 0;
derive_unit.unit_arg_cm <== unit_arg_cm;
unit <== derive_unit.out;
// Verify the ownership of the consummed notes deriving the public keys from the secret keys
component pk[maxInputs];
for(var i =0; i<maxInputs; i++){
pk[i] = derive_public_key();
pk[i].secret_key <== secret_key_in[i];
}
// Derive the commitments of the consummed notes
component cm_in[maxInputs];
for(var i =0; i<maxInputs; i++){
cm_in[i] = commitment();
cm_in[i].state <== state_in[i];
cm_in[i].value <== value_in[i];
cm_in[i].unit <== unit;
cm_in[i].nonce <== nonce_in[i];
cm_in[i].zoneID <== zoneID_in[i];
cm_in[i].public_key <== pk[i].out;
}
// Derive the nullifiers of the consummed notes
component nf[maxInputs];
for(var i=0; i<maxInputs; i++){
nf[i] = nullifier();
nf[i].commitment <== cm_in[i].out;
nf[i].secret_key <== secret_key_in[i];
nullifier[i] <== nf[i].out;
}
// Prove the commitment membership against the chosen root(s)
component cm_membership[maxInputs];
for(var i =0; i< maxInputs; i++){
//First check selectors are indeed bits
for(var j = 0; j < 32; j++){
cm_selectors[i][j] * (1 - cm_selectors[i][j]) === 0;
}
//Then check the proof of membership
cm_membership[i] = proof_of_membership(32);
for(var j = 0; j < 32; j++){
cm_membership[i].nodes[j] <== cm_nodes[i][j];
cm_membership[i].selector[j] <== cm_selectors[i][j];
}
cm_membership[i].root <== commitments_root[i];
cm_membership[i].leaf <== cm_in[i].out;
}
// Derive the commitments of the created notes
component cm_out[maxOutputs];
for(var i =0; i<maxOutputs; i++){
cm_out[i] = commitment();
cm_out[i].state <== state_out[i];
cm_out[i].value <== value_out[i];
cm_out[i].unit <== unit;
cm_out[i].nonce <== nonce_out[i];
cm_out[i].zoneID <== zoneID_out[i];
cm_out[i].public_key <== public_key_out[i];
commitments[i] <== cm_out[i].out;
}
signal b[maxInputs + maxInputs];
b[0] <== value_in[0] * is_a_input_note[0];
for(var i = 1; i< maxInputs; i++){
b[i] <== b[i-1] + value_in[i] * is_a_input_note[i];
}
for(var i =0; i< maxOutputs; i++){
b[i + maxInputs] <== b[maxInputs + i - 1] - value_out[i] * is_a_output_note[i];
}
balance <== b[maxInputs + maxOutputs - 1];
//dummy quadratic contraints to avoid optimisation erasing the public input
signal dummy;
dummy <== attached_data * attached_data;
}
component main {public [zoneID_in,is_a_input_note,is_a_output_note,commitments_root,zoneID_out]}= shielded_transaction(4,4);

View File

@ -29,6 +29,7 @@ template proof_of_membership(n) {
}
// /!\ DEPRECATED /!\
// proof of Merkle non-membership using an IMT of depth n
// /!\ To call this function, it's important to check that each selector is a bit before!!!
template proof_of_non_membership(n) {

View File

@ -28,6 +28,7 @@ template commitment(){
out <== hash.out;
}
// We don't use it anymore
template nullifier(){
signal input commitment;
signal input secret_key;