diff --git a/requirements.txt b/requirements.txt index 1b260ef..a9ef857 100644 --- a/requirements.txt +++ b/requirements.txt @@ -34,6 +34,7 @@ pytest-dependency==0.6.0 PyYAML==6.0.1 requests==2.31.0 ruamel.yaml==0.17.21 +scikit-learn~=1.6.1 setuptools==70.0.0 tenacity==8.2.3 typeguard==4.1.5 @@ -43,4 +44,7 @@ urllib3==2.2.2 virtualenv==20.25.0 Jinja2~=3.1.5 psutil~=7.0.0 -pytest-shard==0.1.2 \ No newline at end of file +pytest-shard==0.1.2 +learn~=1.0.0 +pandas~=2.3.0 +nltk~=3.9.1 \ No newline at end of file diff --git a/src/node/nomos_node.py b/src/node/nomos_node.py index a65f0e4..663f09b 100644 --- a/src/node/nomos_node.py +++ b/src/node/nomos_node.py @@ -12,6 +12,7 @@ from src.docker_manager import DockerManager, stop, kill from src.env_vars import DOCKER_LOG_DIR from src.node.node_vars import nomos_nodes from src.test_data import LOG_ERROR_KEYWORDS +from src.tfidf.tfidf import LogTfidf logger = get_custom_logger(__name__) @@ -146,22 +147,12 @@ class NomosNode: return internal_port.replace("/tcp", "") return None - def check_nomos_log_errors(self, whitelist=None): + def check_nomos_log_errors(self): keywords = LOG_ERROR_KEYWORDS - # If a whitelist is provided, remove those keywords from the keywords list - if whitelist: - keywords = [keyword for keyword in keywords if keyword not in whitelist] - - matches_found = self._docker_manager.search_log_for_keywords(self._log_path, keywords, False) - - logger.info(f"Printing log matches for {self.name()}") - if matches_found: - for keyword, log_lines in matches_found.items(): - for line in log_lines: - logger.debug(f"Log line matching keyword '{keyword}': {line}") - else: - logger.debug("No keyword matches found in the logs.") + logger.debug(f"Parsing log for node {self.name()}") + log_tfidf = LogTfidf() + log_tfidf.parse_log(self._log_path, f"{self._log_path}.parsed", keywords, True) def extract_config(self, target_file): # Copy the config file from first node diff --git a/src/tfidf/__init__.py b/src/tfidf/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/src/tfidf/tfidf.py b/src/tfidf/tfidf.py new file mode 100644 index 0000000..829c8db --- /dev/null +++ b/src/tfidf/tfidf.py @@ -0,0 +1,72 @@ +import re + +import sklearn.feature_extraction.text as ext +import pandas as pd +from nltk import word_tokenize +from nltk.stem.porter import PorterStemmer +from sklearn.feature_extraction._stop_words import ENGLISH_STOP_WORDS + + +def normalize_log_message(text): + # Remove timestamps (e.g., "2023-10-01 12:34:56") + text = re.sub(r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}", "", text) + # Remove numeric IDs (e.g., "user123", "session456") + text = re.sub(r"\b\w*\d+\w*\b", "", text) + return " ".join(text.split()) + + +class LogTfidf: + def __init__(self): + self.stemmer = PorterStemmer() + self.stop_words = self._generate_stop_words() + + def _generate_stop_words(self): + stop_words = [self.stemmer.stem(word) for word in ENGLISH_STOP_WORDS if word.isalpha()] + # Add any missing stemmed tokens from the warning + stop_words.extend(["anywh", "becau", "el", "elsewh", "everywh", "ind", "otherwi", "plea", "somewh"]) + return stop_words + + def get_stemmed_tokens(self, tokens): + return [self.stemmer.stem(token) for token in tokens if token.isalpha()] + + def get_tokens(self, text): + tokens = word_tokenize(text.lower()) + return self.get_stemmed_tokens(tokens) + + def parse_log(self, input_file, output_file, keywords, print_to_stdout=True): + vectorizer = ext.CountVectorizer(tokenizer=self.get_tokens, stop_words=self.stop_words, token_pattern=None) + with open(input_file, "r") as file: + lines = [line.rstrip() for line in file] + line_nos = dict(zip(range(1, len(lines)), lines)) + doc_matrix = vectorizer.fit_transform(lines) + + tf_idf_transformer = ext.TfidfTransformer().fit(doc_matrix) + sparse = tf_idf_transformer.transform(doc_matrix).toarray() + + per_line_score = [] + for row in sparse: + nonzero_count = len(row.nonzero()[0]) + score = row.sum() / nonzero_count if nonzero_count > 0 else 0 + per_line_score.append(score) + + line_scores = dict(zip(range(1, len(lines)), per_line_score)) + + # Filter by keywords and sort according to rarity + df = pd.DataFrame([line_nos, line_scores]).T + df.columns = ["d1", "d2"] # Simplified column naming for clarity + df = df.sort_values(by="d2", ascending=False) + pattern = "|".join(keywords) + df = df[~((df["d1"].str.contains("INFO")) & (~df["d1"].str.contains(pattern)))] + + # Normalize and deduplicate + df["d1_normalized"] = df["d1"].apply(normalize_log_message) + df = df.drop_duplicates(subset="d1_normalized", keep="first") + df = df.drop(columns="d1_normalized") + + with open(output_file, "w") as out_file: + for index, row in df.iterrows(): + line = "{0}\n" + line = line.format(row["d1"]) + out_file.write(line) + if print_to_stdout: + print(line)