Framework for serverless Decentralized Applications using Ethereum, IPFS and other platforms https://framework.embarklabs.io/
Go to file
Iuri Matias 135c3c06a7 finclude transaction cost in gas estimation 2017-02-06 21:34:10 -05:00
bin revert back initial messae 2017-02-06 06:51:26 -05:00
boilerplate downgrade boilerplate mocha 2017-02-06 20:41:45 -05:00
demo fix tests 2017-02-06 06:55:42 -05:00
docs update readme 2017-02-06 20:59:36 -05:00
js implement whisper stop watch; add callback so sendMessage become async 2017-02-06 06:51:27 -05:00
lib finclude transaction cost in gas estimation 2017-02-06 21:34:10 -05:00
old_test add test for abi and blockchain config; fix whisper config 2016-10-14 07:01:54 -04:00
test update tests 2017-02-06 20:25:51 -05:00
.codeclimate.yml disable guard-in check in eslint (for now) 2016-10-30 19:08:20 -04:00
.gitignore update docs 2017-01-10 06:40:28 -05:00
.npmignore add npmignore file 2015-05-24 14:00:18 -04:00
.nycrc update code coverage condig 2016-10-22 21:02:11 -04:00
.travis.yml update code coverage condig 2016-10-22 21:02:11 -04:00
Gruntfile.coffee add jshint task 2016-10-22 17:22:58 -04:00
LICENSE add license 2015-07-10 20:41:45 -04:00
README.md update readme 2017-02-06 20:59:36 -05:00
package.json Lock down `solc` dependency version because people can't semver worth shite 2017-02-04 18:25:11 -05:00
webpack.config.js support IPFS 2016-10-06 07:40:21 -04:00

README.md

Join the chat at https://gitter.im/iurimatias/embark-framework BuildStatus Code Climate

What is Embark

Embark is a framework that allows you to easily develop and deploy Decentralized Applications (DApps).

A Decentralized Application is serverless html5 application that uses one or more decentralized technologies.

Embark currently integrates with EVM blockchains (Ethereum), Decentralized Storages (IPFS), and Decentralizaed communication platforms (Whisper and Orbit). Swarm is supported for deployment.

With Embark you can:

Blockchain (Ethereum)

  • Automatically deploy contracts and make them available in your JS code. Embark watches for changes, and if you update a contract, Embark will automatically redeploy the contracts (if needed) and the dapp.
  • Do Test Driven Development with Contracts using Javascript.
  • Keep track of deployed contracts, deploy only when truly needed.
  • Manage different chains (e.g testnet, private net, livenet)
  • Easily manage complex systems of interdependent contracts.

Decentralized Storage (IPFS)

  • Easily Store & Retrieve Data on the DApp through EmbarkJS. Includin uploading and retrieving files.
  • Deploy the full application to IPFS or Swarm.

Decentralized Communication (Whisper, Orbit)

  • Easily send/receive messages through channels in P2P through Whisper or Orbit.

Web Technologies

  • Integrate with any web technology including React, Foundation, etc..
  • Use any build pipeline or tool you wish, including grunt and meteor. (for 1.x, plugins coming soon for 2.x series)

Table of Contents

Installation

Requirements: geth (1.5.8 or higher), node (6.9.1 or higher is recommended) and npm Optional: testrpc (3.0 or higher) if using the simulator or the test functionality. Further: depending on the dapp stack you choose: IPFS

$ npm -g install embark

# If you plan to use the simulator instead of a real ethereum node.
$ npm -g install ethereumjs-testrpc

See Complete Installation Instructions.

updating from embark 1

Embark's npm package has changed from embark-framework to embark, this sometimes can create conflicts. To update first uninstall embark-framework 1 to avoid any conflicts. npm uninstall -g embark-framework then npm install -g embark

Usage - Demo

Embark Demo screenshot

You can easily create a sample working DApp with the following:

$ embark demo
$ cd embark_demo

You can run a REAL ethereum node for development purposes:

$ embark blockchain

Alternatively, to use an ethereum rpc simulator simply run:

$ embark simulator

By default embark blockchain will mine a minimum amount of ether and will only mine when new transactions come in. This is quite usefull to keep a low CPU. The option can be configured at config/blockchain.json. Note that running a real node requires at least 2GB of free ram, please take this into account if running it in a VM.

Then, in another command line:

$ embark run

This will automatically deploy the contracts, update their JS bindings and deploy your DApp to a local server at http://localhost:8000

Note that if you update your code it will automatically be re-deployed, contracts included. There is no need to restart embark, refreshing the page on the browser will do.

Dashboard

Embark 2 comes with a terminal dashboard.

Dashboard

The dashboard will tell you the state of your contracts, the enviroment you are using, and what embark is doing at the moment.

available services

Available Services will display the services available to your dapp in green, if one of these is down then it will be displayed in red.

logs and console

There is a console at the bottom which can be used to interact with contracts or with embark itself. type help to see a list of available commands, more commands will be added with each version of Embark.

Creating a new DApp

If you want to create a blank new app.

$ embark new AppName
$ cd AppName

DApp Structure

  app/
    |___ contracts/ #solidity or serpent contracts
    |___ html/
    |___ css/
    |___ js/
  config/
    |___ blockchain.json #environments configuration
    |___ contracts.json  #contracts configuration
  test/
    |___ #contracts tests

Solidity/Serpent files in the contracts directory will automatically be deployed with embark run. Changes in any files will automatically be reflected in app, changes to contracts will result in a redeployment and update of their JS Bindings

Libraries and languages available

Embark can build and deploy contracts coded in Solidity. It will make them available on the client side using EmbarkJS and Web3.js.

Further documentation for these can be found below:

Using Contracts

Embark will automatically take care of deployment for you and set all needed JS bindings. For example, the contract below:

# app/contracts/simple_storage.sol
contract SimpleStorage {
  uint public storedData;

  function SimpleStorage(uint initialValue) {
    storedData = initialValue;
  }

  function set(uint x) {
    storedData = x;
  }
  function get() constant returns (uint retVal) {
    return storedData;
  }
}

Will automatically be available in Javascript as:

# app/js/index.js
SimpleStorage.set(100);
SimpleStorage.get().then(function(value) { console.log(value.toNumber()) });
SimpleStorage.storedData().then(function(value) { console.log(value.toNumber()) });

You can specify for each contract and environment its gas costs and arguments:

# config/contracts.json
{
  "development": {
    "gas": "auto",
    "contracts": {
      "SimpleStorage": {
        "args": [
          100
        ]
      }
    }
  }
}

If you are using multiple contracts, you can pass a reference to another contract as $ContractName, Embark will automatically replace this with the correct address for the contract.

# config/contracts.json
{
  ...
  "development": {
    "contracts": {
      "SimpleStorage": {
        "args": [
          100,
          $MyStorage
        ]
      },
      "MyStorage": {
        "args": [
          "initial string"
        ]
      },
      "MyMainContract": {
        "args": [
          $SimpleStorage
        ]
      }
    }
  }
  ...
}

You can now deploy many instances of the same contract. e.g

# config/contracts.json
{
  "development": {
    "contracts": {
      "Currency": {
        "deploy": false,
        "args": [
          100
        ]
      },
      "Usd": {
        "instanceOf": "Currency",
        "args": [
          200
        ]
      },
      "MyCoin": {
        "instanceOf": "Currency",
        "args": [
          200
        ]
      }
    }
  }
}
  ...

Contracts addresses can be defined, If an address is defined the contract wouldn't be deployed but its defined address will be used instead.

# config/contracts.json
{
  ...
  "development": {
    "contracts": {
      "UserStorage": {
        "address": "0x123456"
      },
      "UserManagement": {
        "args": [
          "$UserStorage"
        ]
      }
    }
  }
  ...
}

EmbarkJS

EmbarkJS is a javascript library meant to abstract and facilitate the development of DApps.

promises

methods in EmbarkJS contracts will be converted to promises.

  var myContract = new EmbarkJS.Contract({abi: abiObject, address: "0x123"});
  myContract.get().then(function(value) { console.log("value is " + value.toNumber) });

deployment

Client side deployment will be automatically available in Embark for existing contracts:

  SimpleStorage.deploy().then(function(anotherSimpleStorage) {});

or it can be manually definied as

  var myContract = new EmbarkJS.Contract({abi: abiObject, code: code});
  myContract.deploy().then(function(anotherMyContractObject) {});

EmbarkJS - Storage

initialization

The current available storage is IPFS. it can be initialized as

  EmbarkJS.Storage.setProvider('ipfs',{server: 'localhost', port: '5001'})

Saving Text

  EmbarkJS.Storage.saveText("hello world").then(function(hash) {});

Retrieving Data/Text

  EmbarkJS.Storage.get(hash).then(function(content) {});

Uploading a file

  <input type="file">
  var input = $("input[type=file"]);
  EmbarkJS.Storage.uploadFile(input).then(function(hash) {});

Generate URL to file

  EmbarkJS.Storage.getUrl(hash);

EmbarkJS - Communication

initialization

For Whisper:

    EmbarkJS.Messages.setProvider('whisper')

For Orbit:

You'll need to use IPFS from master and run it as: ipfs daemon --enable-pubsub-experiment

then set the provider:

  EmbarkJS.Messages.setProvider('orbit', {server: 'localhost', port: 5001})

listening to messages

  EmbarkJS.Messages.listenTo({topic: ["topic1", "topic2"]}).then(function(message) { console.log("received: " + message); })

sending messages

you can send plain text

  EmbarkJS.Messages.sendMessage({topic: "sometopic", data: 'hello world'})

or an object

  EmbarkJS.Messages.sendMessage({topic: "sometopic", data: {msg: 'hello world'}})

note: array of topics are considered an AND. In Whisper you can use another array for OR combinations of several topics e.g ["topic1", ["topic2", "topic3"]] => topic1 AND (topic2 OR topic 3)

Tests

You can run specs with embark test, it will run any test files under test/.

Embark includes a testing lib to fastly run & test your contracts in a EVM.

# test/simple_storage_spec.js

var assert = require('assert');
var Embark = require('embark');
var EmbarkSpec = Embark.initTests();
var web3 = EmbarkSpec.web3;

describe("SimpleStorage", function() {
  before(function(done) {
    var contractsConfig = {
      "SimpleStorage": {
        args: [100]
      }
    };
    EmbarkSpec.deployAll(contractsConfig, done);
  });

  it("should set constructor value", function(done) {
    SimpleStorage.storedData(function(err, result) {
      assert.equal(result.toNumber(), 100);
      done();
    });
  });

  it("set storage value", function(done) {
    SimpleStorage.set(150, function() {
      SimpleStorage.get(function(err, result) {
        assert.equal(result.toNumber(), 150);
        done();
      });
    });
  });

});

Embark uses Mocha by default, but you can use any testing framework you want.

Working with different chains

You can specify which environment to deploy to:

$ embark blockchain production

$ embark run production

The environment is a specific blockchain configuration that can be managed at config/blockchain.json

# config/blockchain.json
  ...
   "livenet": {
    "networkType": "livenet",
    "rpcHost": "localhost",
    "rpcPort": 8545,
    "rpcCorsDomain": "http://localhost:8000",
    "account": {
      "password": "config/production/password"
    }
  },
  ...

Structuring Application

Embark is quite flexible and you can configure you're own directory structure using embark.json

# embark.json
{
  "contracts": ["app/contracts/**"],
  "app": {
    "css/app.css": ["app/css/**"],
    "images/": ["app/images/**"],
    "js/app.js": ["embark.js", "app/js/**"],
    "index.html": "app/index.html"
  },
  "buildDir": "dist/",
  "config": "config/",
  "plugins": {}
}

Deploying to IPFS and Swarm

To deploy a dapp to IPFS, all you need to do is run a local IPFS node and then run embark upload ipfs. If you want to deploy to the livenet then after configuring you account on config/blockchain.json on the production environment then you can deploy to that chain by specifying the environment embark ipfs production.

To deploy a dapp to SWARM, all you need to do is run a local SWARM node and then run embark upload swarm.

Plugins

It's possible to extend Embarks functionality with plugins. For example the follow is possible:

  • plugin to add support for es6, jsx, coffescript, etc (embark.registerPipeline)
  • plugin to add standard contracts or a contract framework (embark.registerContractConfiguration and embark.addContractFile)
  • plugin to make some contracts available in all environments for use by other contracts or the dapp itself e.g a Token, a DAO, ENS, etc.. (embark.registerContractConfiguration and embark.addContractFile)
  • plugin to add a libraries such as react or boostrap (embark.addFileToPipeline)
  • plugin to specify a particular web3 initialization for special provider uses (embark.registerClientWeb3Provider)
  • plugin to create a different contract wrapper (embark.registerContractsGeneration)
  • plugin to add new console commands (embark.registerConsoleCommand)
  • plugin to add support for another contract language such as viper, LLL, etc (embark.registerCompiler)

For more information please see the plugin documentation

Donations

If you like Embark please consider donating to 0x8811FdF0F988f0CD1B7E9DE252ABfA5b18c1cDb1