When using accounts, yes those account are always the same, but
ganache still creates it's own accounts, with a random mnemonic.
So Plugins that rely on the node accounts were crashing on second
run, because the node accounts were no longer the same.
Many packages in the monorepo did not specify all of their dependencies; they
were effectively relying on resolution in the monorepo's root
`node_modules`. In a production release of `embark` and `embark[js]-*` packages
this can lead to broken packages.
To fix the problem currently and to help prevent it from happening again, make
use of the `eslint-plugin-import` package's `import/no-extraneous-dependencies`
and `import/no-unresolved` rules. In the root `tslint.json` set
`"no-implicit-dependencies": true`, wich is the tslint equivalent of
`import/no-extraneous-dependencies`; there is no tslint equivalent for
`import/no-unresolved`, but we will eventually replace tslint with an eslint
configuration that checks both `.js` and `.ts` files.
For `import/no-unresolved` to work in our monorepo setup, in most packages add
an `index.js` that has:
```js
module.exports = require('./dist'); // or './dist/lib' in some cases
```
And point `"main"` in `package.json` to `"./index.js"`. Despite what's
indicated in npm's documentation for `package.json`, it's also necessary to add
`"index.js"` to the `"files"` array.
Make sure that all `.js` files that can and should be linted are in fact
linted. For example, files in `packages/embark/src/cmd/` weren't being linted
and many test suites weren't being linted.
Bump all relevant packages to `eslint@6.8.0`.
Fix all linter errors that arose after these changes.
Implement a `check-yarn-lock` script that's run as part of `"ci:full"` and
`"qa:full"`, and can manually be invoked via `yarn cylock` in the root of the
monorepo. The script exits with error if any specifiers are found in
`yarn.lock` for `embark[js][-*]` and/or `@embarklabs/*` (with a few exceptions,
cf. `scripts/check-yarn-lock.js`).
fix(@embark/proxy): up max listener for proxy request manager
In the tests, we had warnings about max listeners reached, because
the default limit is 10. So I upped the limit for the request
manager and the WS connection.
stoopid CI
Using tests with a custom --node didn't work, because Ganache always
used it's own provider. Now, it actually checks before if there is
not another node started before using its own provider (+1 squashed commits)
Set Ganache as a blockchain client that doesn't need to be started.
Set it as the default client, at least for development.
Move all blockchain related stuff in the blockchain component
Includes a fix by @emmizle to fix the WS connection in the proxy
Also, in `dapps/tests/contracts` move the `this.timeout(0);` inside the
`it(...)` for the expensive gas esimation (involving
`SimpleStorage.methods.set`) because it otherwise doesn't seem to have an
effect on the default 15 second timeout.
Remove the `<12.0.0` restriction re: Node.js version in the `"engines"`
settings for all the packages in the monorepo that had that restriction.
Add missing `"engines"` settings in `packages/plugins/snark/package.json`.
Adjust the Azure Pipelines config to include builds for Node.js v12.x and
v13.x.
Bump `solc` to `0.4.26` in `dapps/tests/app` and `dapps/tests/contracts`. It
was discovered that older versions suffered a fatal `Maximum call stack size
exceeded` error when run on Windows with Node.js v12.x or newer. Display a
warning re: the bad combo (solc version + Windows + Node version) if it's
detected at runtime.
Adjust the root `yarn.lock` so that the `sha3` transitive dependency resolves
to a newer version that is compatible with Node v13.x.
Refactor typings as necessary. In order for `bignumber.js` in the root
`node_modules` to not conflict with `@types/bignumber.js`, specify
`"bignumber.js": "5.0.0"` in `devDependencies` and `"embark-ui/bignumber.js"`
in `nohoist` of the root `package.json`.
In `packages/plugins/rpc-manager` switch from callback to promise usage with
respect to `web3.eth.accounts.signTransaction` because of a [bug][bug]
discovered in web3 v1.2.4.
In `packages/plugins/solidity-tests` specialize the tsc compiler options with
`"skipLibCheck": true` because of a problematic web3-related typing in the
`.d.ts` files of the remix-tests package.
Bump ganache-cli from 6.4.3 to 6.7.0 (latest) because 6.4.3 doesn't support
`eth_chainId` but web3 1.2.4 makes use of the `eth_chainId` RPC method (EIP
695).
BREAKING CHANGE: bump embark's minimum supported version of parity from
`>=2.0.0` to `>=2.2.1`. This is necessary since web3 1.2.4 makes use of the
`eth_chainId` RPC method (EIP 695) and that parity version is the earliest one
to implement it.
[bug]: https://github.com/ethereum/web3.js/issues/3283
This PR replaces #2057.
Implement a collective typecheck action that can be invoked in the root of the
monorepo with `yarn typecheck` or in watch-mode with `yarn watch:typecheck`.
Include the watch-mode typecheck action as part of `yarn start` (a.k.a
`yarn watch`).
To activate collective typecheck for a package in the monorepo, its
`package.json` file should specify:
```
{
"embark-collective": {
"typecheck": true
}
}
```
*-or-*
```
{
"embark-collective": {
"typecheck": {...}
}
}
```
Where `{...}` above is a `tsconfig.json` fragment that will be merged into the
config generated for the package according the same rules that `tsc` applies
when merging [configs][config].
When collective typecheck begins, it generates a `tsconfig.json` for the root
of the monorepo and for each package that is activated for the action. If the
generated JSON is different than what's on disk for the respective root/package
config, or if the config is not present on disk, then it will be
written. Changes to generated `tsconfig.json` files should be committed; such
changes will arise when there are structural changes to the monorepo, e.g. a
package is added, removed, moved and/or the directory containing it is
renamed. Since the configs are only generated at the beginning of collective
typecheck, when structural changes are made in the monorepo `yarn typecheck`
(or `yarn start` or `yarn watch:typecheck`) should be restarted.
Nearly all of the packages in the monorepo (i.e. all those for which it makes
sense) have been activated for collective typecheck. Even those packages that
don't contain `.ts` sources are activated because `tsc` can make better sense
of the code base as a whole owing to the project references included in the
generated `tsconfig.json` files. Also, owing to the fully cross-referenced
`tsconfig.json` files, it's possible for `tsc` to type check the whole code
base without babel (`yarn build` or `yarn watch:build`) having been run
beforehand.
**NOTE** that a *"cold typecheck"* of the whole monorepo is resource intensive:
on this author's 2019 MacBook Pro it takes around three minutes, the fans spin
up, and `tsc` uses nearly 0.5 GB of RAM. However, once a full typecheck has
completed, the next full typecheck will complete in a few seconds or less; and
when running in watch-mode there is likewise a *big* speedup once a full
typecheck has completed, whether that full check happened before it's running
in watch-mode or when watch-mode itself resulted in a full check before
switching automatically to incremental check, as well a corresponding *big*
reduction in resource consumption. A full check will be needed any time
`yarn typecheck` (or `yarn start` or `yarn watch:typecheck`) is run in a fresh
clone plus `yarn install`, or after doing `yarn reboot[:full]` or `yarn reset`.
The combination of options in each generated package-level `tsconfig.json` and
the root `tsconfig.base.json` result in `tsc` writing `.d.ts` files (TypeScript
declaration files) into the `dist/` directory of each package. That
output is intended to live side-by-side with babel's output, and therefore the
`"rootDir"` option in each generated config is set to `"./src"`.
In projects activated for collective typecheck, `.js` may be converted to `.ts`
and/or `.ts` sources may be added without any additional changes needed in
package-level `package.json`.
---
Reorganize types in `packages/core/typings` (a.k.a `@types/embark`) into
`packages/core/core` (`embark-core`), refactor other packages' imports
accordingly, and delete `packages/core/typings` from the monorepo. This results
in some similarly named but incompatible types exported from `embark-core`
(e.g. `Events` and `EmbarkEvents`, the latter being the one from
`packages/core/typings`); future refactoring should consolidate those types. To
avoid circular dependency relationships it's also necessary to split out
`Engine` from `embark-core` into its own package (`embark-engine`) and to
introduce a bit of duplication, e.g. the `Maybe` type that's now defined in
both `embark-i18n` and `embark-core`.
In the process of the types reorg, move many dependencies spec'd in various
`package.json` to the `package.json` of the package/s that actually depend on
them, e.g. many are moved from `packages/embark/package.json` to
`packages/core/engine/package.json`. Related to those moves, fix some Node.js
`require`-logic related to bug-prone dependency resolution.
Fix all type errors that appeared as a result of activating collective
typecheck across the whole monorepo.
Reactivate `tslint` in `packages/core/core` and fix the remaining linter errors.
Tidy up and add a few items in the root `package.json` scripts.
Bump lerna from `3.16.4` to `3.19.0`.
Bumpt typescript from `3.6.3` to `3.7.2`.
Bumpt tslint from `5.16.0` to `5.20.1`.
Make various changes related to packages' `import`/`require`ing packages that
weren't spec'd in their respective `package.json`. More refactoring is needed
in this regard, but changes were made as the problems were observed in the
process of authoring this PR.
[config]: https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
When `eth_unsubscribe` is received in the proxy, ensure this request is forwarded through on the correct socket (the same socket that was used for the corresponding `eth_subscribe`).
Move subscription handling for `eth_subscribe` and `eth_unsubscribe` to RpcModifiers (in `rpc-manager` package).
For each `eth_subscribe` request, a new `RequestManager` is created. Since the endpoint property on the proxy class was updated to be a provider, the same provider was being assigned to each new `RequestManager` and thus creating multiple event handlers for each subscription created. To circumvent this, we are now creating a new provider for each `RequestManager`.
Co-authored-by: Pascal Precht <pascal.precht@googlemail.com>