add tree recursion approach2

This commit is contained in:
M Alghazwi 2025-01-09 10:35:10 +01:00
parent 3f2d8cc88c
commit 1a46bd085d
No known key found for this signature in database
GPG Key ID: 646E567CAD7DB607
2 changed files with 458 additions and 0 deletions

View File

@ -0,0 +1,389 @@
use plonky2::iop::target::BoolTarget;
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::{CircuitConfig, CircuitData, CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData};
use plonky2::plonk::config::GenericConfig;
use plonky2::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use plonky2_poseidon2::poseidon2_hash::poseidon2::Poseidon2;
use crate::recursion::params::{C, D, F, H};
use crate::recursion::inner_circuit::InnerCircuit;
use anyhow::{anyhow, Result};
use plonky2::recursion::cyclic_recursion::check_cyclic_proof_verifier_data;
// use serde::de::Unexpected::Option;
use crate::circuits::utils::select_hash;
use crate::recursion::{leaf_circuit, utils};
use crate::recursion::utils::{get_dummy_leaf_proof, get_dummy_node_proof};
/// the tree recursion struct simplifies the process
/// of building, proving and verifying
/// - N: number of inner proofs to verify in the node circuit
pub struct TreeRecursion<
const N: usize,
>{
pub node: NodeCircuit<N>
}
impl<
const N: usize,
> TreeRecursion<N> {
// pub fn new(node_circ: NodeCircuit<N>) -> Self{
// Self{
// node_circ,
// }
// }
pub fn build(
) -> Result<Self>{
Ok(
Self{
node: NodeCircuit::<N>::build_circuit()?,
}
)
}
/// generates a proof - only one node
/// takes N proofs
pub fn prove(
&mut self,
// node_targets: NodeCircuitTargets<N>,
leaf_proof_options: Option<[ProofWithPublicInputs<F, C, D>; N]>,
node_proof_options: Option<[ProofWithPublicInputs<F, C, D>; N]>,
// leaf_verifier_only_data: &VerifierOnlyCircuitData<C, D>,
is_leaf: bool,
) -> Result<ProofWithPublicInputs<F, C, D>>{
let mut pw = PartialWitness::new();
NodeCircuit::assign_targets(
self.node.node_targets.clone(),
leaf_proof_options,
node_proof_options,
&self.node.node_data.leaf_circuit_data.verifier_only,
&mut pw,
is_leaf,
)?;
let proof = self.node.node_data.node_circuit_data.prove(pw)?;
//TODO: move this to verify function
if !is_leaf {
check_cyclic_proof_verifier_data(
&proof,
&self.node.node_data.node_circuit_data.verifier_only,
&self.node.node_data.node_circuit_data.common,
)?;
}
Ok(proof)
}
/// prove n leaf proofs in a tree structure
/// the function uses circuit data from self takes
/// - leaf_proofs: vector of circuit inputs
pub fn prove_tree(
&mut self,
leaf_proofs: Vec<ProofWithPublicInputs<F, C, D>>,
) -> Result<ProofWithPublicInputs<F, C, D>> {
// 1. Check the total number of leaf_proofs is divisible by N
if leaf_proofs.len() % N != 0 {
return Err(anyhow!(
"input proofs must be divisible by {}, got {}",
N,
leaf_proofs.len()
));
}
// 2. Prepare the dummy proofs
// let node_targets = self.node.node_targets.clone();
let dummy_node_proof = get_dummy_node_proof(
&self.node.node_data.inner_node_common_data,
&self.node.node_data.node_circuit_data.verifier_only,
);
let dummy_node_proofs: [ProofWithPublicInputs<F, C, D>; N] = (0..N)
.map(|_| dummy_node_proof.clone())
.collect::<Vec<_>>()
.try_into()
.map_err(|_| anyhow!("Expected exactly N node dummy proofs"))?;
let dummy_leaf_proof = get_dummy_leaf_proof(&self.node.node_data.leaf_circuit_data.common);
let dummy_leaf_proofs: [ProofWithPublicInputs<F, C, D>; N] = (0..N)
.map(|_| dummy_leaf_proof.clone())
.collect::<Vec<_>>()
.try_into()
.map_err(|_| anyhow!("Expected exactly N leaf dummy proofs"))?;
// 3. Work through levels of proofs until only one remains
let mut current_level_proofs = leaf_proofs;
// Keep reducing until were left with 1 proof
let mut level: usize = 0;
while current_level_proofs.len() >= N {
let mut next_level_proofs = Vec::new();
// Process in chunks of N
for chunk in current_level_proofs.chunks_exact(N) {
// Convert the chunk slice into a fixed-size array
let chunk_array: [ProofWithPublicInputs<F, C, D>; N] = chunk
.to_vec() // create a Vec
.try_into()
.map_err(|_| anyhow!("Failed to convert to array of size N"))?;
// Decide which side is the leaf or node
// The logic here assumes the "first" chunk is the leaf
let (leaf_chunk, node_chunk, is_leaf) = if level == 0 {
(chunk_array, dummy_node_proofs.clone(), true)
} else {
(dummy_leaf_proofs.clone(), chunk_array, false)
};
let node = self.prove(
// node_targets.clone(),
Some(leaf_chunk),
Some(node_chunk),
is_leaf,
)?;
next_level_proofs.push(node);
}
current_level_proofs = next_level_proofs;
level = level + 1;
}
// 4. Check that exactly one proof remains
if current_level_proofs.len() != 1 {
return Err(anyhow!(
"Expected exactly 1 final proof, found {}",
current_level_proofs.len()
));
}
// 5. Return the final root proof
Ok(current_level_proofs.remove(0))
}
/// verifies the proof generated
/// TODO: separate prover from verifier.
pub fn verify_proof(
&self,
proof: ProofWithPublicInputs<F, C, D>
) -> Result<()>{
self.node.node_data.node_circuit_data.verify(proof)?;
Ok(())
}
}
/// Node circuit struct
/// contains necessary data
/// N: number of proofs verified in-circuit (so num of child nodes)
pub struct NodeCircuit<
const N: usize,
>{
pub node_targets: NodeCircuitTargets<N>,
pub node_data: NodeData,
}
/// Node circuit targets
/// assumes that all leaf proofs use the same verifier data
#[derive(Clone, Debug)]
pub struct NodeCircuitTargets<
const N: usize,
>{
pub leaf_proofs: [ProofWithPublicInputsTarget<D>; N],
pub condition: BoolTarget,
pub node_proofs: [ProofWithPublicInputsTarget<D>; N],
pub leaf_verifier_data: VerifierCircuitTarget,
}
/// Node common data and verifier data
#[derive(Debug)]
pub struct NodeData<
>{
pub node_circuit_data: CircuitData<F, C, D>,
pub inner_node_common_data: CommonCircuitData<F, D>,
pub leaf_circuit_data: CircuitData<F, C, D>,
}
impl<
const N: usize,
> NodeCircuit< N> {
/// builds the node circuit
/// the circuit data and targets are stored in the node struct
pub fn build_circuit(
) -> Result<NodeCircuit<N>>{
// builder with standard recursion config
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
// circuit data for leaf
let leaf_circ_data = leaf_circuit::circuit_data_for_leaf()?;
// common data for leaf
let leaf_common = leaf_circ_data.common.clone();
// virtual proofs for leaf proofs
let mut leaf_proofs = vec![];
for i in 0..N {
let vir_proof = builder.add_virtual_proof_with_pis(&leaf_common);
leaf_proofs.push(vir_proof);
}
// get the public input hash from all inner proof targets
let mut leaf_pub_input_hashes = vec![];
for i in 0..N {
let inner_cyclic_pis = &leaf_proofs[i].public_inputs;
leaf_pub_input_hashes.extend_from_slice(&inner_cyclic_pis[0..4]);
}
// hash the public input so H(H_0, ..., H_N)
let leaf_pub_input_hash = builder.hash_n_to_hash_no_pad::<H>(leaf_pub_input_hashes);
// leaf verifier data
// TODO: double check that it is ok for this verifier data to be private/witness
let leaf_verifier_data = builder.add_virtual_verifier_data(leaf_common.config.fri_config.cap_height);
// condition
let condition = builder.add_virtual_bool_target_safe();
// verify leaf proofs in-circuit if it is a leaf node,
// meaning that we are on bottom layer of the tree
for i in 0..N{
builder.conditionally_verify_proof_or_dummy::<C>(condition,&leaf_proofs[i],&leaf_verifier_data, &leaf_common)?;
}
// common data for recursion
let mut common_data = utils::common_data_for_node::<N>()?;
// public input hash. defined here so that is public_input[0..4]
let pub_input_hash = builder.add_virtual_hash_public_input();
// verifier data for the recursion.
let _verifier_data_target = builder.add_verifier_data_public_inputs();
common_data.num_public_inputs = builder.num_public_inputs();
// flipped condition. used to conditionally verify the node proofs (recursive proofs)
let one = builder.one();
let flipped_condition = BoolTarget::new_unsafe(builder.sub(one,condition.target));
let inner_cyclic_proof_with_pis: [ProofWithPublicInputsTarget<D>; N] = (0..N)
.map(|_| builder.add_virtual_proof_with_pis(&common_data))
.collect::<Vec<_>>()
.try_into()
.map_err(|_| anyhow!("Expected exactly N proof targets"))?;
// get the public input hash from all inner proof targets
let mut inner_pub_input_hashes = vec![];
for i in 0..N {
let inner_cyclic_pis = &inner_cyclic_proof_with_pis[i].public_inputs;
inner_pub_input_hashes.extend_from_slice(&inner_cyclic_pis[0..4]);
}
// hash all the node public input h = H(h_1 | h_2 | ... | h_N)
// TODO: optimize by removing the need for 2 hashes and instead select then hash
let inner_pub_input_hash = builder.hash_n_to_hash_no_pad::<H>(inner_pub_input_hashes);
let node_hash_or_leaf_hash = select_hash(&mut builder, condition, leaf_pub_input_hash, inner_pub_input_hash);
builder.connect_hashes(pub_input_hash,node_hash_or_leaf_hash);
// verify all N proofs in-circuit
for i in 0..N {
builder.conditionally_verify_cyclic_proof_or_dummy::<C>(
flipped_condition,
&inner_cyclic_proof_with_pis[i],
&common_data,
)?;
}
// build the node circuit
let node_circuit_data = builder.build::<C>();
// collect the leaf proofs
let leaf_proofs: [ProofWithPublicInputsTarget<D>; N] = (0..N)
.map(|i| {
leaf_proofs[i].clone()
})
.collect::<Vec<_>>()
.try_into()
.map_err(|_| anyhow!("Expected exactly M inner circuits"))?;
// store targets
let node_targets = NodeCircuitTargets::<N>{
leaf_proofs,
condition,
node_proofs: inner_cyclic_proof_with_pis,
leaf_verifier_data
};
let node_data = NodeData{
node_circuit_data,
inner_node_common_data: common_data,
leaf_circuit_data: leaf_circ_data,
};
let node = NodeCircuit{
node_targets,
node_data,
};
Ok(node)
}
/// assigns the targets for the Node circuit - takes
/// - either leaf or circuit proofs
/// - leaf circuit data
/// - partial witness
/// - bool value, true if leaf node, otherwise false.
pub fn assign_targets(
node_targets: NodeCircuitTargets<N>,
leaf_proof_options: Option<[ProofWithPublicInputs<F, C, D>; N]>,
node_proof_options: Option<[ProofWithPublicInputs<F, C, D>; N]>,
leaf_verifier_only_data: &VerifierOnlyCircuitData<C, D>,
pw: &mut PartialWitness<F>,
is_leaf: bool,
) -> Result<()>{
if(is_leaf == true) {
let leaf_proofs: [ProofWithPublicInputs<F, C, D>; N] = leaf_proof_options.unwrap();
// dummy
let dummy_node = node_proof_options.unwrap();
// assign the condition
pw.set_bool_target(node_targets.condition, true)?;
for i in 0..N {
// assign the node proofs with dummy
pw.set_proof_with_pis_target::<C, D>(
&node_targets.node_proofs[i],
&dummy_node[i],
)?;
// assign the leaf proof with real proofs
pw.set_proof_with_pis_target(
&node_targets.leaf_proofs[i],
&leaf_proofs[i]
)?;
}
}else{
// assign the condition
pw.set_bool_target(node_targets.condition, false)?;
// node proofs
let node_proofs = node_proof_options.unwrap(); // add error check
// dummy leaf
let dummy_leaf = leaf_proof_options.unwrap();
for i in 0..N {
// assign the node proofs
pw.set_proof_with_pis_target(&node_targets.node_proofs[i], &node_proofs[i])?;
// assign leaf proofs with dummy
pw.set_proof_with_pis_target::<C, D>(
&node_targets.leaf_proofs[i],
&dummy_leaf[i],
)?;
}
}
// assign the verifier data (only for the leaf proofs)
pw.set_verifier_data_target(&node_targets.leaf_verifier_data, leaf_verifier_only_data)?;
Ok(())
}
}

View File

@ -0,0 +1,69 @@
use plonky2::plonk::circuit_data::{CircuitConfig, CommonCircuitData, VerifierOnlyCircuitData};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::gates::noop::NoopGate;
use plonky2::plonk::proof::ProofWithPublicInputs;
use plonky2::recursion::dummy_circuit::{cyclic_base_proof, dummy_circuit, dummy_proof};
use hashbrown::HashMap;
use crate::recursion::params::{C, D, F};
/// Generates `CommonCircuitData` usable for node recursion.
/// the circuit being built here depends on M and N so must be re-generated
/// if the params change
pub fn common_data_for_node<const N: usize>() -> anyhow::Result<CommonCircuitData<F, D>>
{
// layer 1
let config = CircuitConfig::standard_recursion_config();
let builder = CircuitBuilder::<F, D>::new(config);
let data = builder.build::<C>();
// layer 2
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let verifier_data = builder.add_virtual_verifier_data(data.common.config.fri_config.cap_height);
// generate and verify N number of proofs
for _ in 0..1 {
let proof = builder.add_virtual_proof_with_pis(&data.common);
builder.verify_proof::<C>(&proof, &verifier_data, &data.common);
}
let data = builder.build::<C>();
// layer 3
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
// add a ConstantGate
builder.add_gate(
plonky2::gates::constant::ConstantGate::new(config.num_constants),
vec![],
);
// generate and verify N number of proofs
let verifier_data = builder.add_verifier_data_public_inputs();
for _ in 0..N {
let proof = builder.add_virtual_proof_with_pis(&data.common);
builder.verify_proof::<C>(&proof, &verifier_data, &data.common);
}
// pad. TODO: optimize this padding to only needed number of gates
while builder.num_gates() < 1 << 14 {
builder.add_gate(NoopGate, vec![]);
}
Ok(builder.build::<C>().common)
}
// creates a dummy proof with given common circuit data
pub fn get_dummy_leaf_proof(common_data: &CommonCircuitData<F, D>) -> ProofWithPublicInputs<F, C, D> {
dummy_proof::<F, C, D>(
&dummy_circuit::<F, C, D>(common_data),
HashMap::new(),
).unwrap()
}
pub fn get_dummy_node_proof(node_common: &CommonCircuitData<F, D>, node_verifier_only_data: &VerifierOnlyCircuitData<C, D>) -> ProofWithPublicInputs<F, C, D>{
cyclic_base_proof(
node_common,
node_verifier_only_data,
HashMap::new(),
)
}