* Start ChaCha20Poly1305 integration (BearSSL)

* Add Curve25519 (BearSSL) required operations for noise

* Fix curve mulgen iterate/derive

* Fix misleading header

* Add chachapoly proper test

* Curve25519 integration tests (failing, something is wrong)

* Add few converters, finish c25519 integration tests

* Remove implicit converters

* removed internal globals

* Start noise implementation

* Fix public() using proper bear mulgen

* Noise protocol WIP

* Noise progress

* Add a quick nim version of HKDF

* Converted hkdf to iterator, useful for noise

* Noise protocol implementation progress

* Noise progress

* XX handshake almost there

* noise progress

* Noise, testing handshake with test vectors

* Noise handshake progress, still wrong somewhere!

* Noise handshake success!

* Full verified noise XX handshake completed

* Fix and rewrite test to be similar to switch one

* Start with connection upgrade

* Switch chachapoly to CT implementations

* Improve HKDF implementation

* Use a type insted of tuple for HandshakeResult

* Remove unnecessary Let

* More cosmetic fixes

* Properly check randomBytes result

* Fix chachapoly signature

* Noise full circle (altho dispatcher is nil cursed)

* Allow nil aads in chachapoly routines

* Noise implementation up to running full test

* Use bearssl HKDF as well

* Directly use bearssl rng for curve25519 keys

* Add a (disabled/no CI) noise interop test server

* WIP on fixing interop issues

* More fixes in noise implementation for interop

* bump chronos requirement (nimble)

* Add a chachapoly test for very small size payloads

* Noise, more tracing

* Add 2 properly working noise tests

* Fix payload packing, following the spec properly (and not go version but
rather rust)

* Sanity, replace discard with asyncCheck

* Small fixes and optimization

* Use stew endian2 rather then system endian module

* Update nimble deps (chronos)

* Minor cosmetic/code sanity fixes

* Noise, handle Nonce max

* Noise tests, make sure to close secured conns

* More polish, improve code readability too

* More polish and testing again which test fails

* Further polishing

* Restore noise tests

* Remove useless Future[void]

* Remove useless CipherState initializer

* add a proper read wait future in second noise test

* Remove noise generic secure implementation for now

* Few fixes to run eth2 sim

* Add more debug info in noise traces

* Merge size + payload write in sendEncryptedMessage

* Revert secure interface, add outgoing property directly in newNoise

* remove sendEncrypted and receiveEncrypted

* Use openarray in chachapoly and curve25519 helpers
This commit is contained in:
Giovanni Petrantoni 2020-03-17 21:30:01 +09:00 committed by GitHub
parent 56e68f2cc7
commit c02fca25f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 889 additions and 34 deletions

View File

@ -22,4 +22,4 @@ proc runTest(filename: string) =
task test, "Runs the test suite":
runTest "testnative"
runTest "testdaemon"
runTest "testinterop"
runTest "testinterop"

View File

@ -28,68 +28,73 @@ type
ChaChaPolyNonce* = array[ChaChaPolyNonceSize, byte]
ChaChaPolyTag* = array[ChaChaPolyTagSize, byte]
proc intoChaChaPolyKey*(s: seq[byte]): ChaChaPolyKey =
proc intoChaChaPolyKey*(s: openarray[byte]): ChaChaPolyKey =
assert s.len == ChaChaPolyKeySize
copyMem(addr result[0], unsafeaddr s[0], ChaChaPolyKeySize)
proc intoChaChaPolyNonce*(s: seq[byte]): ChaChaPolyNonce =
proc intoChaChaPolyNonce*(s: openarray[byte]): ChaChaPolyNonce =
assert s.len == ChaChaPolyNonceSize
copyMem(addr result[0], unsafeaddr s[0], ChaChaPolyNonceSize)
proc intoChaChaPolyTag*(s: seq[byte]): ChaChaPolyTag =
proc intoChaChaPolyTag*(s: openarray[byte]): ChaChaPolyTag =
assert s.len == ChaChaPolyTagSize
copyMem(addr result[0], unsafeaddr s[0], ChaChaPolyTagSize)
# bearssl allows us to use optimized versions
# this is reconciled at runtime
# we do this in the global scope / module init
template fetchImpl: untyped =
# try for the best first
var
chachapoly_native_impl {.inject.}: Poly1305Run = poly1305CtmulqGet()
chacha_native_impl {.inject.}: Chacha20Run = chacha20Sse2Get()
# fall back if not available
if chachapoly_native_impl == nil:
chachapoly_native_impl = poly1305CtmulRun
if chacha_native_impl == nil:
chacha_native_impl = chacha20CtRun
let
chachapoly_native_impl {.inject.}: Poly1305Run = poly1305CtmulRun
chacha_native_impl {.inject.}: Chacha20Run = chacha20CtRun
proc encrypt*(_: type[ChaChaPoly],
key: var ChaChaPolyKey,
nonce: var ChaChaPolyNonce,
key: ChaChaPolyKey,
nonce: ChaChaPolyNonce,
tag: var ChaChaPolyTag,
data: var openarray[byte],
aad: var openarray[byte]) =
aad: openarray[byte]) =
fetchImpl()
let
ad = if aad.len > 0:
unsafeaddr aad[0]
else:
nil
chachapoly_native_impl(
addr key[0],
addr nonce[0],
unsafeaddr key[0],
unsafeaddr nonce[0],
addr data[0],
data.len,
addr aad[0],
ad,
aad.len,
addr tag[0],
chacha_native_impl,
#[encrypt]# 1.cint)
proc decrypt*(_: type[ChaChaPoly],
key: var ChaChaPolyKey,
nonce: var ChaChaPolyNonce,
key: ChaChaPolyKey,
nonce: ChaChaPolyNonce,
tag: var ChaChaPolyTag,
data: var openarray[byte],
aad: var openarray[byte]) =
aad: openarray[byte]) =
fetchImpl()
let
ad = if aad.len > 0:
unsafeaddr aad[0]
else:
nil
chachapoly_native_impl(
addr key[0],
addr nonce[0],
unsafeaddr key[0],
unsafeaddr nonce[0],
addr data[0],
data.len,
addr aad[0],
ad,
aad.len,
addr tag[0],
chacha_native_impl,

View File

@ -16,6 +16,7 @@
# RFC @ https://tools.ietf.org/html/rfc7748
import bearssl
import nimcrypto/sysrand
const
Curve25519KeySize* = 32
@ -24,10 +25,13 @@ type
Curve25519* = object
Curve25519Key* = array[Curve25519KeySize, byte]
pcuchar = ptr cuchar
Curver25519RngError* = object of CatchableError
proc intoCurve25519Key*(s: seq[byte]): Curve25519Key =
proc intoCurve25519Key*(s: openarray[byte]): Curve25519Key =
assert s.len == Curve25519KeySize
copyMem(addr result[0], unsafeaddr s[0], Curve25519KeySize)
proc getBytes*(key: Curve25519Key): seq[byte] = @key
const
ForbiddenCurveValues: array[12, Curve25519Key] = [
@ -45,7 +49,7 @@ const
[219.byte, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 25],
]
proc byteswap*(buf: var Curve25519Key) {.inline.} =
proc byteswap(buf: var Curve25519Key) {.inline.} =
for i in 0..<16:
let
x = buf[i]
@ -97,3 +101,12 @@ proc mulgen*(_: type[Curve25519], dst: var Curve25519Key, point: Curve25519Key)
proc public*(private: Curve25519Key): Curve25519Key =
Curve25519.mulgen(result, private)
proc random*(_: type[Curve25519Key]): Curve25519Key =
var rng: BrHmacDrbgContext
let seeder = brPrngSeederSystem(nil)
brHmacDrbgInit(addr rng, addr sha256Vtable, nil, 0)
if seeder(addr rng.vtable) == 0:
raise newException(ValueError, "Could not seed RNG")
let defaultBrEc = brEcGetDefault()
if brEcKeygen(addr rng.vtable, defaultBrEc, nil, addr result[0], EC_curve25519) != Curve25519KeySize:
raise newException(Curver25519RngError, "Could not generate random data")

32
libp2p/crypto/hkdf.nim Normal file
View File

@ -0,0 +1,32 @@
## Nim-LibP2P
## Copyright (c) 2020 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
# https://tools.ietf.org/html/rfc5869
import math
import nimcrypto
import bearssl
type
BearHKDFContext {.importc: "br_hkdf_context", header: "bearssl_kdf.h".} = object
HKDFResult*[len: static int] = array[len, byte]
proc br_hkdf_init(ctx: ptr BearHKDFContext; hashClass: ptr HashClass; salt: pointer; len: csize) {.importc: "br_hkdf_init", header: "bearssl_kdf.h".}
proc br_hkdf_inject(ctx: ptr BearHKDFContext; ikm: pointer; len: csize) {.importc: "br_hkdf_inject", header: "bearssl_kdf.h".}
proc br_hkdf_flip(ctx: ptr BearHKDFContext) {.importc: "br_hkdf_flip", header: "bearssl_kdf.h".}
proc br_hkdf_produce(ctx: ptr BearHKDFContext; info: pointer; infoLen: csize; output: pointer; outputLen: csize) {.importc: "br_hkdf_produce", header: "bearssl_kdf.h".}
proc hkdf*[T: sha256; len: static int](_: type[T]; salt, ikm, info: openarray[byte]; outputs: var openarray[HKDFResult[len]]) =
var
ctx: BearHKDFContext
br_hkdf_init(addr ctx, addr sha256Vtable, if salt.len > 0: unsafeaddr salt[0] else: nil, salt.len)
br_hkdf_inject(addr ctx, if ikm.len > 0: unsafeaddr ikm[0] else: nil, ikm.len)
br_hkdf_flip(addr ctx)
for i in 0..outputs.high:
br_hkdf_produce(addr ctx, if info.len > 0: unsafeaddr info[0] else: nil, info.len, addr outputs[i][0], outputs[i].len)

View File

@ -0,0 +1,519 @@
## Nim-LibP2P
## Copyright (c) 2020 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
import chronos
import chronicles
import random
import stew/[endians2, byteutils]
import nimcrypto/[utils, sysrand, sha2, hmac]
import ../../connection
import ../../peer
import ../../peerinfo
import ../../protobuf/minprotobuf
import secure,
../../crypto/[crypto, chacha20poly1305, curve25519, hkdf],
../../stream/bufferstream
logScope:
topic = "Noise"
const
# https://godoc.org/github.com/libp2p/go-libp2p-noise#pkg-constants
NoiseCodec* = "/noise"
PayloadString = "noise-libp2p-static-key:"
ProtocolXXName = "Noise_XX_25519_ChaChaPoly_SHA256"
# Empty is a special value which indicates k has not yet been initialized.
EmptyKey: ChaChaPolyKey = [0.byte, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
NonceMax = uint64.high - 1 # max is reserved
type
KeyPair = object
privateKey: Curve25519Key
publicKey: Curve25519Key
# https://noiseprotocol.org/noise.html#the-cipherstate-object
CipherState = object
k: ChaChaPolyKey
n: uint64
# https://noiseprotocol.org/noise.html#the-symmetricstate-object
SymmetricState = object
cs: CipherState
ck: ChaChaPolyKey
h: MDigest[256]
# https://noiseprotocol.org/noise.html#the-handshakestate-object
HandshakeState = object
ss: SymmetricState
s: KeyPair
e: KeyPair
rs: Curve25519Key
re: Curve25519Key
HandshakeResult = object
cs1: CipherState
cs2: CipherState
remoteP2psecret: seq[byte]
rs: Curve25519Key
Noise* = ref object of Secure
localPrivateKey: PrivateKey
localPublicKey: PublicKey
noisePrivateKey: Curve25519Key
noisePublicKey: Curve25519Key
commonPrologue: seq[byte]
outgoing: bool
NoiseConnection* = ref object of SecureConn
readCs: CipherState
writeCs: CipherState
NoiseHandshakeError* = object of CatchableError
NoiseDecryptTagError* = object of CatchableError
NoiseOversizedPayloadError* = object of CatchableError
NoiseNonceMaxError* = object of CatchableError # drop connection on purpose
# Utility
proc genKeyPair(): KeyPair =
result.privateKey = Curve25519Key.random()
result.publicKey = result.privateKey.public()
proc hashProtocol(name: string): MDigest[256] =
# If protocol_name is less than or equal to HASHLEN bytes in length,
# sets h equal to protocol_name with zero bytes appended to make HASHLEN bytes.
# Otherwise sets h = HASH(protocol_name).
if name.len <= 32:
result.data[0..name.high] = name.toBytes
else:
result = sha256.digest(name)
proc dh(priv: Curve25519Key, pub: Curve25519Key): Curve25519Key =
Curve25519.mul(result, pub, priv)
# Cipherstate
proc hasKey(cs: CipherState): bool =
cs.k != EmptyKey
proc encryptWithAd(state: var CipherState, ad, data: openarray[byte]): seq[byte] =
var
tag: ChaChaPolyTag
nonce: ChaChaPolyNonce
np = cast[ptr uint64](addr nonce[4])
np[] = state.n
result = @data
ChaChaPoly.encrypt(state.k, nonce, tag, result, ad)
inc state.n
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
result &= tag
trace "encryptWithAd", tag = byteutils.toHex(tag), data = byteutils.toHex(result), nonce = state.n - 1
proc decryptWithAd(state: var CipherState, ad, data: openarray[byte]): seq[byte] =
var
tagIn = data[^ChaChaPolyTag.len..data.high].intoChaChaPolyTag
tagOut = tagIn
nonce: ChaChaPolyNonce
np = cast[ptr uint64](addr nonce[4])
np[] = state.n
result = data[0..(data.high - ChaChaPolyTag.len)]
ChaChaPoly.decrypt(state.k, nonce, tagOut, result, ad)
trace "decryptWithAd", tagIn = byteutils.toHex(tagIn), tagOut=byteutils.toHex(tagOut), nonce = state.n
if tagIn != tagOut:
error "decryptWithAd failed", data = byteutils.toHex(data)
raise newException(NoiseDecryptTagError, "decryptWithAd failed tag authentication.")
inc state.n
if state.n > NonceMax:
raise newException(NoiseNonceMaxError, "Noise max nonce value reached")
# Symmetricstate
proc init(_: type[SymmetricState]): SymmetricState =
result.h = ProtocolXXName.hashProtocol
result.ck = result.h.data.intoChaChaPolyKey
result.cs = CipherState(k: EmptyKey)
proc mixKey(ss: var SymmetricState, ikm: ChaChaPolyKey) =
var
temp_keys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], temp_keys)
ss.ck = temp_keys[0]
ss.cs = CipherState(k: temp_keys[1])
trace "mixKey", key = ss.cs.k
proc mixHash(ss: var SymmetricState; data: openarray[byte]) =
var ctx: sha256
ctx.init()
ctx.update(ss.h.data)
ctx.update(data)
ss.h = ctx.finish()
trace "mixHash", hash = ss.h.data
# We might use this for other handshake patterns/tokens
proc mixKeyAndHash(ss: var SymmetricState; ikm: openarray[byte]) {.used.} =
var
temp_keys: array[3, ChaChaPolyKey]
sha256.hkdf(ss.ck, ikm, [], temp_keys)
ss.ck = temp_keys[0]
ss.mixHash(temp_keys[1])
ss.cs = CipherState(k: temp_keys[2])
proc encryptAndHash(ss: var SymmetricState, data: openarray[byte]): seq[byte] =
# according to spec if key is empty leave plaintext
if ss.cs.hasKey:
result = ss.cs.encryptWithAd(ss.h.data, data)
else:
result = @data
ss.mixHash(result)
proc decryptAndHash(ss: var SymmetricState, data: openarray[byte]): seq[byte] =
# according to spec if key is empty leave plaintext
if ss.cs.hasKey:
result = ss.cs.decryptWithAd(ss.h.data, data)
else:
result = @data
ss.mixHash(data)
proc split(ss: var SymmetricState): tuple[cs1, cs2: CipherState] =
var
temp_keys: array[2, ChaChaPolyKey]
sha256.hkdf(ss.ck, [], [], temp_keys)
return (CipherState(k: temp_keys[0]), CipherState(k: temp_keys[1]))
proc init(_: type[HandshakeState]): HandshakeState =
result.ss = SymmetricState.init()
template write_e: untyped =
trace "noise write e"
# Sets e (which must be empty) to GENERATE_KEYPAIR(). Appends e.public_key to the buffer. Calls MixHash(e.public_key).
hs.e = genKeyPair()
msg &= hs.e.publicKey
hs.ss.mixHash(hs.e.publicKey)
template write_s: untyped =
trace "noise write s"
# Appends EncryptAndHash(s.public_key) to the buffer.
msg &= hs.ss.encryptAndHash(hs.s.publicKey)
template dh_ee: untyped =
trace "noise dh ee"
# Calls MixKey(DH(e, re)).
hs.ss.mixKey(dh(hs.e.privateKey, hs.re))
template dh_es: untyped =
trace "noise dh es"
# Calls MixKey(DH(e, rs)) if initiator, MixKey(DH(s, re)) if responder.
when initiator:
hs.ss.mixKey(dh(hs.e.privateKey, hs.rs))
else:
hs.ss.mixKey(dh(hs.s.privateKey, hs.re))
template dh_se: untyped =
trace "noise dh se"
# Calls MixKey(DH(s, re)) if initiator, MixKey(DH(e, rs)) if responder.
when initiator:
hs.ss.mixKey(dh(hs.s.privateKey, hs.re))
else:
hs.ss.mixKey(dh(hs.e.privateKey, hs.rs))
# might be used for other token/handshakes
template dh_ss: untyped {.used.} =
trace "noise dh ss"
# Calls MixKey(DH(s, rs)).
hs.ss.mixKey(dh(hs.s.privateKey, hs.rs))
template read_e: untyped =
trace "noise read e", size = msg.len
if msg.len < Curve25519Key.len:
raise newException(NoiseHandshakeError, "Noise E, expected more data")
# Sets re (which must be empty) to the next DHLEN bytes from the message. Calls MixHash(re.public_key).
hs.re[0..Curve25519Key.high] = msg[0..Curve25519Key.high]
msg = msg[Curve25519Key.len..msg.high]
hs.ss.mixHash(hs.re)
template read_s: untyped =
trace "noise read s", size = msg.len
# Sets temp to the next DHLEN + 16 bytes of the message if HasKey() == True, or to the next DHLEN bytes otherwise.
# Sets rs (which must be empty) to DecryptAndHash(temp).
let
temp =
if hs.ss.cs.hasKey:
if msg.len < Curve25519Key.len + ChaChaPolyTag.len:
raise newException(NoiseHandshakeError, "Noise S, expected more data")
msg[0..Curve25519Key.high + ChaChaPolyTag.len]
else:
if msg.len < Curve25519Key.len:
raise newException(NoiseHandshakeError, "Noise S, expected more data")
msg[0..Curve25519Key.high]
msg = msg[temp.len..msg.high]
let plain = hs.ss.decryptAndHash(temp)
hs.rs[0..Curve25519Key.high] = plain
proc receiveHSMessage(sconn: Connection): Future[seq[byte]] {.async.} =
var besize: array[2, byte]
await sconn.readExactly(addr besize[0], 2)
let size = uint16.fromBytesBE(besize).int
trace "receiveHSMessage", size
return await sconn.read(size)
proc sendHSMessage(sconn: Connection; buf: seq[byte]) {.async.} =
var
lesize = buf.len.uint16
besize = lesize.toBytesBE
trace "sendHSMessage", size = lesize
await sconn.write(besize[0].addr, besize.len)
await sconn.write(buf)
proc packNoisePayload(payload: openarray[byte]): seq[byte] =
let
noiselen = rand(2..31)
plen = payload.len.uint16
var
noise = newSeq[byte](noiselen)
if randomBytes(noise) != noiselen:
raise newException(NoiseHandshakeError, "Failed to generate randomBytes")
result &= plen.toBytesBE
result &= payload
result &= noise
if result.len > uint16.high.int:
raise newException(NoiseOversizedPayloadError, "Trying to send an unsupported oversized payload over Noise")
trace "packed noise payload", inSize = payload.len, outSize = result.len
proc unpackNoisePayload(payload: var seq[byte]) =
let
besize = payload[0..1]
size = uint16.fromBytesBE(besize).int
if size > (payload.len - 2):
raise newException(NoiseOversizedPayloadError, "Received a wrong payload size")
payload = payload[2..^((payload.len - size) - 1)]
trace "unpacked noise payload", size = payload.len
proc handshakeXXOutbound(p: Noise, conn: Connection, p2pProof: ProtoBuffer): Future[HandshakeResult] {.async.} =
const initiator = true
var
hs = HandshakeState.init()
p2psecret = p2pProof.buffer
hs.ss.mixHash(p.commonPrologue)
hs.s.privateKey = p.noisePrivateKey
hs.s.publicKey = p.noisePublicKey
# -> e
var msg: seq[byte]
write_e()
# IK might use this btw!
msg &= hs.ss.encryptAndHash(@[])
await conn.sendHSMessage(msg)
# <- e, ee, s, es
msg = await conn.receiveHSMessage()
read_e()
dh_ee()
read_s()
dh_es()
var remoteP2psecret = hs.ss.decryptAndHash(msg)
unpackNoisePayload(remoteP2psecret)
# -> s, se
msg.setLen(0)
write_s()
dh_se()
# last payload must follow the ecrypted way of sending
var packed = packNoisePayload(p2psecret)
msg &= hs.ss.encryptAndHash(packed)
await conn.sendHSMessage(msg)
let (cs1, cs2) = hs.ss.split()
return HandshakeResult(cs1: cs1, cs2: cs2, remoteP2psecret: remoteP2psecret, rs: hs.rs)
proc handshakeXXInbound(p: Noise, conn: Connection, p2pProof: ProtoBuffer): Future[HandshakeResult] {.async.} =
const initiator = false
var
hs = HandshakeState.init()
p2psecret = p2pProof.buffer
hs.ss.mixHash(p.commonPrologue)
hs.s.privateKey = p.noisePrivateKey
hs.s.publicKey = p.noisePublicKey
# -> e
var msg = await conn.receiveHSMessage()
read_e()
# we might use this early data one day, keeping it here for clarity
let earlyData {.used.} = hs.ss.decryptAndHash(msg)
# <- e, ee, s, es
msg.setLen(0)
write_e()
dh_ee()
write_s()
dh_es()
var packedSecret = packNoisePayload(p2psecret)
msg &= hs.ss.encryptAndHash(packedSecret)
await conn.sendHSMessage(msg)
# -> s, se
msg = await conn.receiveHSMessage()
read_s()
dh_se()
var remoteP2psecret = hs.ss.decryptAndHash(msg)
unpackNoisePayload(remoteP2psecret)
let (cs1, cs2) = hs.ss.split()
return HandshakeResult(cs1: cs1, cs2: cs2, remoteP2psecret: remoteP2psecret, rs: hs.rs)
method readMessage(sconn: NoiseConnection): Future[seq[byte]] {.async.} =
try:
var besize: array[2, byte]
await sconn.readExactly(addr besize[0], 2)
let size = uint16.fromBytesBE(besize).int
trace "receiveEncryptedMessage", size, peer = $sconn.peerInfo
if size == 0:
return @[]
let
cipher = await sconn.read(size)
var plain = sconn.readCs.decryptWithAd([], cipher)
unpackNoisePayload(plain)
return plain
except AsyncStreamIncompleteError:
trace "Connection dropped while reading"
except AsyncStreamReadError:
trace "Error reading from connection"
method writeMessage(sconn: NoiseConnection, message: seq[byte]): Future[void] {.async.} =
try:
let
packed = packNoisePayload(message)
cipher = sconn.writeCs.encryptWithAd([], packed)
var
lesize = cipher.len.uint16
besize = lesize.toBytesBE
outbuf = newSeqOfCap[byte](cipher.len + 2)
trace "sendEncryptedMessage", size = lesize, peer = $sconn.peerInfo
outbuf &= besize
outbuf &= cipher
await sconn.write(outbuf)
except AsyncStreamWriteError:
trace "Could not write to connection"
method handshake*(p: Noise, conn: Connection, initiator: bool = false): Future[SecureConn] {.async.} =
trace "Starting Noise handshake", initiator
# https://github.com/libp2p/specs/tree/master/noise#libp2p-data-in-handshake-messages
let
signedPayload = p.localPrivateKey.sign(PayloadString.toBytes & p.noisePublicKey.getBytes)
var
libp2pProof = initProtoBuffer()
libp2pProof.write(initProtoField(1, p.localPublicKey))
libp2pProof.write(initProtoField(2, signedPayload))
# data field also there but not used!
libp2pProof.finish()
let handshakeRes =
if initiator:
await handshakeXXOutbound(p, conn, libp2pProof)
else:
await handshakeXXInbound(p, conn, libp2pProof)
var
remoteProof = initProtoBuffer(handshakeRes.remoteP2psecret)
remotePubKey: PublicKey
remoteSig: Signature
if remoteProof.getValue(1, remotePubKey) <= 0:
raise newException(NoiseHandshakeError, "Failed to deserialize remote public key.")
if remoteProof.getValue(2, remoteSig) <= 0:
raise newException(NoiseHandshakeError, "Failed to deserialize remote public key.")
let verifyPayload = PayloadString.toBytes & handshakeRes.rs.getBytes
if not remoteSig.verify(verifyPayload, remotePubKey):
raise newException(NoiseHandshakeError, "Noise handshake signature verify failed.")
else:
trace "Remote signature verified"
if initiator and not isNil(conn.peerInfo):
let pid = PeerID.init(remotePubKey)
if not conn.peerInfo.peerId.validate():
raise newException(NoiseHandshakeError, "Failed to validate peerId.")
if pid != conn.peerInfo.peerId:
raise newException(NoiseHandshakeError, "Noise handshake, peer infos don't match! " & $pid & " != " & $conn.peerInfo.peerId)
var secure = new NoiseConnection
secure.stream = conn
secure.closeEvent = newAsyncEvent()
secure.peerInfo = PeerInfo.init(remotePubKey)
if initiator:
secure.readCs = handshakeRes.cs2
secure.writeCs = handshakeRes.cs1
else:
secure.readCs = handshakeRes.cs1
secure.writeCs = handshakeRes.cs2
debug "Noise handshake completed!"
return secure
method init*(p: Noise) {.gcsafe.} =
procCall Secure(p).init()
p.codec = NoiseCodec
method secure*(p: Noise, conn: Connection): Future[Connection] {.async, gcsafe.} =
try:
result = await p.handleConn(conn, p.outgoing)
except CatchableError as exc:
warn "securing connection failed", msg = exc.msg
if not conn.closed():
await conn.close()
proc newNoise*(privateKey: PrivateKey; outgoing: bool = true; commonPrologue: seq[byte] = @[]): Noise =
new result
result.outgoing = outgoing
result.localPrivateKey = privateKey
result.localPublicKey = privateKey.getKey()
discard randomBytes(result.noisePrivateKey)
result.noisePublicKey = result.noisePrivateKey.public()
result.commonPrologue = commonPrologue
result.init()

View File

@ -68,7 +68,7 @@ method init*(s: Secure) {.gcsafe.} =
proc handle(conn: Connection, proto: string) {.async, gcsafe.} =
trace "handling connection"
try:
asyncCheck s.handleConn(conn)
asyncCheck s.handleConn(conn, false)
trace "connection secured"
except CatchableError as exc:
if not conn.closed():

View File

@ -181,7 +181,7 @@ proc upgradeOutgoing(s: Switch, conn: Connection): Future[Connection] {.async, g
s.connections[conn.peerInfo.id] = result
proc upgradeIncoming(s: Switch, conn: Connection) {.async, gcsafe.} =
trace "upgrading incoming connection"
trace "upgrading incoming connection", conn = $conn
let ms = newMultistream()
# secure incoming connections

View File

@ -40,7 +40,7 @@ proc connCb(server: StreamServer,
client: StreamTransport) {.async, gcsafe.} =
trace "incomming connection for", address = $client.remoteAddress
let t: Transport = cast[Transport](server.udata)
discard t.connHandler(server, client)
asyncCheck t.connHandler(server, client)
method init*(t: TcpTransport) =
t.multicodec = multiCodec("tcp")

View File

@ -11,7 +11,7 @@
## https://github.com/libp2p/go-libp2p-crypto/blob/master/key.go
import unittest
import nimcrypto/[utils, sysrand]
import ../libp2p/crypto/[crypto, chacha20poly1305, curve25519]
import ../libp2p/crypto/[crypto, chacha20poly1305, curve25519, hkdf]
when defined(nimHasUsed): {.used.}
@ -480,6 +480,17 @@ suite "Key interface test suite":
check ntag.toHex == tag.toHex
ChaChaPoly.decrypt(key, nonce, ntag, text, aed)
check text.toHex == plain.toHex
check ntag.toHex == tag.toHex
# ensure even a 2 byte array works
var
smallPlain: array[2, byte]
btag: ChaChaPolyTag
noaed: array[0, byte]
ChaChaPoly.encrypt(key, nonce, btag, smallPlain, noaed)
ntag = btag
ChaChaPoly.decrypt(key, nonce, btag, smallPlain, noaed)
check ntag.toHex == btag.toHex
test "Curve25519":
# from bearssl test_crypto.c
@ -524,3 +535,26 @@ suite "Key interface test suite":
check secret1.toHex == secret2.toHex
test "HKDF 1":
let
ikm = fromHex("0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b")
salt = fromHex("0x000102030405060708090a0b0c")
info = fromHex("0xf0f1f2f3f4f5f6f7f8f9")
truth = "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865"
var
output: array[1, array[42, byte]]
sha256.hkdf(salt, ikm, info, output)
check output[0].toHex(true) == truth
test "HKDF 2":
let
ikm = fromHex("0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b")
salt = fromHex("")
info = fromHex("")
truth = "8da4e775a563c18f715f802a063c5a31b8a11f5c5ee1879ec3454e5f3c738d2d9d201395faa4b61a96c8"
var
output: array[1, array[42, byte]]
sha256.hkdf(salt, ikm, info, output)
check output[0].toHex(true) == truth

View File

@ -7,6 +7,7 @@ import testtransport,
testbufferstream,
testidentify,
testswitch,
testnoise,
testpeerinfo,
pubsub/testpubsub,
# TODO: placing this before pubsub tests,

251
tests/testnoise.nim Normal file
View File

@ -0,0 +1,251 @@
## Nim-LibP2P
## Copyright (c) 2020 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
import unittest, tables
import chronos
import chronicles
import ../libp2p/crypto/crypto
import ../libp2p/[switch,
multistream,
protocols/identify,
connection,
transports/transport,
transports/tcptransport,
multiaddress,
peerinfo,
crypto/crypto,
peer,
protocols/protocol,
muxers/muxer,
muxers/mplex/mplex,
muxers/mplex/types,
protocols/secure/noise,
protocols/secure/secure]
const TestCodec = "/test/proto/1.0.0"
type
TestProto = ref object of LPProtocol
method init(p: TestProto) {.gcsafe.} =
proc handle(conn: Connection, proto: string) {.async, gcsafe.} =
let msg = cast[string](await conn.readLp())
check "Hello!" == msg
await conn.writeLp("Hello!")
await conn.close()
p.codec = TestCodec
p.handler = handle
proc createSwitch(ma: MultiAddress; outgoing: bool): (Switch, PeerInfo) =
var peerInfo: PeerInfo = PeerInfo.init(PrivateKey.random(RSA))
peerInfo.addrs.add(ma)
let identify = newIdentify(peerInfo)
proc createMplex(conn: Connection): Muxer =
result = newMplex(conn)
let mplexProvider = newMuxerProvider(createMplex, MplexCodec)
let transports = @[Transport(newTransport(TcpTransport))]
let muxers = [(MplexCodec, mplexProvider)].toTable()
let secureManagers = [(NoiseCodec, Secure(newNoise(peerInfo.privateKey, outgoing = outgoing)))].toTable()
let switch = newSwitch(peerInfo,
transports,
identify,
muxers,
secureManagers)
result = (switch, peerInfo)
suite "Noise":
test "e2e: handle write + noise":
proc testListenerDialer(): Future[bool] {.async.} =
let
server: MultiAddress = Multiaddress.init("/ip4/0.0.0.0/tcp/0")
serverInfo = PeerInfo.init(PrivateKey.random(RSA), [server])
serverNoise = newNoise(serverInfo.privateKey, outgoing = false)
proc connHandler(conn: Connection) {.async, gcsafe.} =
let sconn = await serverNoise.secure(conn)
defer:
await sconn.close()
await sconn.write(cstring("Hello!"), 6)
let
transport1: TcpTransport = newTransport(TcpTransport)
asyncCheck await transport1.listen(server, connHandler)
let
transport2: TcpTransport = newTransport(TcpTransport)
clientInfo = PeerInfo.init(PrivateKey.random(RSA), [transport1.ma])
clientNoise = newNoise(clientInfo.privateKey, outgoing = true)
conn = await transport2.dial(transport1.ma)
sconn = await clientNoise.secure(conn)
msg = await sconn.read(6)
await sconn.close()
await transport1.close()
result = cast[string](msg) == "Hello!"
check:
waitFor(testListenerDialer()) == true
test "e2e: handle read + noise":
proc testListenerDialer(): Future[bool] {.async.} =
let
server: MultiAddress = Multiaddress.init("/ip4/0.0.0.0/tcp/0")
serverInfo = PeerInfo.init(PrivateKey.random(RSA), [server])
serverNoise = newNoise(serverInfo.privateKey, outgoing = false)
readTask = newFuture[void]()
proc connHandler(conn: Connection) {.async, gcsafe.} =
let sconn = await serverNoise.secure(conn)
defer:
await sconn.close()
let msg = await sconn.read(6)
check cast[string](msg) == "Hello!"
readTask.complete()
let
transport1: TcpTransport = newTransport(TcpTransport)
asyncCheck await transport1.listen(server, connHandler)
let
transport2: TcpTransport = newTransport(TcpTransport)
clientInfo = PeerInfo.init(PrivateKey.random(RSA), [transport1.ma])
clientNoise = newNoise(clientInfo.privateKey, outgoing = true)
conn = await transport2.dial(transport1.ma)
sconn = await clientNoise.secure(conn)
await sconn.write("Hello!".cstring, 6)
await readTask
await sconn.close()
await transport1.close()
result = true
check:
waitFor(testListenerDialer()) == true
test "e2e use switch dial proto string":
proc testSwitch(): Future[bool] {.async, gcsafe.} =
let ma1: MultiAddress = Multiaddress.init("/ip4/0.0.0.0/tcp/0")
let ma2: MultiAddress = Multiaddress.init("/ip4/0.0.0.0/tcp/0")
var peerInfo1, peerInfo2: PeerInfo
var switch1, switch2: Switch
var awaiters: seq[Future[void]]
(switch1, peerInfo1) = createSwitch(ma1, false)
let testProto = new TestProto
testProto.init()
testProto.codec = TestCodec
switch1.mount(testProto)
(switch2, peerInfo2) = createSwitch(ma2, true)
awaiters.add(await switch1.start())
awaiters.add(await switch2.start())
let conn = await switch2.dial(switch1.peerInfo, TestCodec)
await conn.writeLp("Hello!")
let msg = cast[string](await conn.readLp())
check "Hello!" == msg
await allFutures(switch1.stop(), switch2.stop())
await allFutures(awaiters)
result = true
check:
waitFor(testSwitch()) == true
# test "interop with rust noise":
# when true: # disable cos in CI we got no interop server/client
# proc testListenerDialer(): Future[bool] {.async.} =
# const
# proto = "/noise/xx/25519/chachapoly/sha256/0.1.0"
# let
# local = Multiaddress.init("/ip4/0.0.0.0/tcp/23456")
# info = PeerInfo.init(PrivateKey.random(RSA), [local])
# noise = newNoise(info.privateKey)
# ms = newMultistream()
# transport = TcpTransport.newTransport()
# proc connHandler(conn: Connection) {.async, gcsafe.} =
# try:
# await ms.handle(conn)
# trace "ms.handle exited"
# except:
# error getCurrentExceptionMsg()
# finally:
# await conn.close()
# ms.addHandler(proto, noise)
# let
# clientConn = await transport.listen(local, connHandler)
# await clientConn
# result = true
# check:
# waitFor(testListenerDialer()) == true
# test "interop with rust noise":
# when true: # disable cos in CI we got no interop server/client
# proc testListenerDialer(): Future[bool] {.async.} =
# const
# proto = "/noise/xx/25519/chachapoly/sha256/0.1.0"
# let
# local = Multiaddress.init("/ip4/0.0.0.0/tcp/0")
# remote = Multiaddress.init("/ip4/127.0.0.1/tcp/23456")
# info = PeerInfo.init(PrivateKey.random(RSA), [local])
# noise = newNoise(info.privateKey)
# ms = newMultistream()
# transport = TcpTransport.newTransport()
# conn = await transport.dial(remote)
# check ms.select(conn, @[proto]).await == proto
# let
# sconn = await noise.secure(conn, true)
# # use sconn
# result = true
# check:
# waitFor(testListenerDialer()) == true
# test "interop with go noise":
# when true: # disable cos in CI we got no interop server/client
# proc testListenerDialer(): Future[bool] {.async.} =
# let
# local = Multiaddress.init("/ip4/0.0.0.0/tcp/23456")
# info = PeerInfo.init(PrivateKey.random(RSA), [local])
# noise = newNoise(info.privateKey)
# ms = newMultistream()
# transport = TcpTransport.newTransport()
# proc connHandler(conn: Connection) {.async, gcsafe.} =
# try:
# let seconn = await noise.secure(conn, false)
# trace "ms.handle exited"
# finally:
# await conn.close()
# let
# clientConn = await transport.listen(local, connHandler)
# await clientConn
# result = true
# check:
# waitFor(testListenerDialer()) == true