nim-codex/codex/storageproofs/por/por.nim

488 lines
13 KiB
Nim
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Nim-POS
## Copyright (c) 2021 Status Research & Development GmbH
## Licensed under either of
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
## at your option.
## This file may not be copied, modified, or distributed except according to
## those terms.
# Implementation of the BLS-based public PoS scheme from
# Shacham H., Waters B., "Compact Proofs of Retrievability"
# using pairing over the BLS12-381 ECC or BN254_Starks
#
# The implementation supports two backends:
# - BLST (default)
# - Constantine (-d:por_backend_constantine)
#
# The implementation supports PoR over the following curves:
# - BLS12-381 (default)
# - BN254_Starks (use -d:por_backend_constantine -d:por_curve_bn254)
#
# Notation from the paper
# In Z:
# - n: number of blocks
# - s: number of sectors per block
#
# In Z_p: modulo curve order
# - m_{ij}: sectors of the file i:0..n-1 j:0..s-1
# - α: PoS secret key
# - name: random string
# - μ_j: part of proof, j:0..s-1
#
# In G_1: multiplicative cyclic group
# - H: {0,1} →G_1 : hash function
# - u_1,…,u_s ←R G_1 : random coefficients
# - σ_i: authenticators
# - σ: part of proof
#
# In G_2: multiplicative cyclic group
# - g: generator of G_2
# - v ← g^α: PoS public key
#
# In G_T:
# - used only to calculate the two pairings during validation
#
# Implementation:
# Our implementation uses additive cyclic groups instead of the multiplicative
# cyclic group in the paper, thus changing the name of the group operation as in
# blscurve and blst. Thus, point multiplication becomes point addition, and scalar
# exponentiation becomes scalar multiplicaiton.
#
# Number of operations:
# The following table summarizes the number of operations in different phases
# using the following notation:
# - f: file size expressed in units of 31 bytes
# - n: number of blocks
# - s: number of sectors per block
# - q: number of query items
#
# Since f = n * s and s is a parameter of the scheme, it is better to express
# the cost as a function of f and s. This only matters for Setup, all other
# phases are independent of the file size assuming a given q.
#
# | | Setup | Challenge | Proof | Verify |
# |----------------|-----------|---------------|-----------|-----------|-----------|
# | G1 random | s = s | q | | |
# | G1 scalar mult | n * (s+1) = f * (1 + 1/s) | | q | q + s |
# | G1 add | n * s = f | | q-1 | q-1 + s-1 |
# | Hash to G1 | n = f / s | | | q |
# | Z_p mult | = | | s * q | |
# | Z_p add | = | | s * (q-1) | |
# | pairing | = | | | 2 |
#
#
# Storage and communication cost:
# The storage overhead for a file of f_b bytes is given by the n authenticators
# calculated in the setup phase.
# f_b = f * 31 = n * s * 31
# Each authenticator is a point on G_1, which occupies 48 bytes in compressed form.
# Thus, the overall sorage size in bytes is:
# f_pos = fb + n * 48 = fb * (1 + (48/31) * (1/s))
#
# Communicaiton cost in the Setup phase is simply related to the storage cost.
# The size of the challenge is
# q * (8 + 48) bytes
# The size of the proof is instead
# s * 32 + 48 bytes
import std/endians
# Select backend to use
# - blst supports only the BLS12-381 curve
# - constantine is more experimental, supports BLS and BN curves as well
# As of now configuration of backends is in the backend_* file itself
when defined(por_backend_constantine):
import ../backends/backend_constantine
else:
import ../backends/backend_blst
import pkg/chronos
import ../../rng
import ../../streams
# sector size in bytes. Must be smaller than the subgroup order r
# which is 255 bits long for BLS12-381
const
BytesPerSector* = 31
# length in bytes of the unique (random) name
Namelen = 512
type
# a single sector
ZChar* = array[BytesPerSector, byte]
# secret key combining the metadata signing key and the POR generation key
SecretKey* = object
signkey*: ec_SecretKey
key*: ec_scalar
# public key combining the metadata signing key and the POR validation key
PublicKey* = object
signkey*: ec_PublicKey
key*: ec_p2
# POR metadata (called "file tag t_0" in the original paper)
TauZero* = object
name*: array[Namelen, byte]
n*: int64
u*: seq[ec_p1]
# signed POR metadata (called "signed file tag t" in the original paper)
Tau* = object
t*: TauZero
signature*: array[96, byte]
Proof* = object
mu*: seq[ec_scalar]
sigma*: ec_p1
# PoR query element
QElement* = object
I*: int64
V*: ec_scalar
PoR* = object
ssk*: SecretKey
spk*: PublicKey
tau*: Tau
authenticators*: seq[ec_p1]
proc fromBytesBE(a: array[32, byte]): ec_scalar =
## Convert data to native form
##
ec_scalar_from_bendian(result, a)
doAssert(ec_scalar_fr_check(result).bool)
proc fromBytesBE(a: openArray[byte]): ec_scalar =
## Convert data to native form
##
var b: array[32, byte]
doAssert(a.len <= b.len)
let d = b.len - a.len
for i in 0..<a.len:
b[i+d] = a[i]
ec_scalar_from_bendian(result, b)
doAssert(ec_scalar_fr_check(result).bool)
proc getSector(
stream: SeekableStream,
blockId: int64,
sectorId: int64,
spb: int64): Future[ZChar] {.async.} =
## Read file sector at given <blockid, sectorid> postion
##
var res: ZChar
stream.setPos(((blockid * spb + sectorid) * ZChar.len).int)
discard await stream.readOnce(addr res[0], ZChar.len)
return res
proc rndScalar(scalar: var ec_scalar): void =
## Generate random scalar within the subroup order r
##
var scal {.noInit.}: array[32, byte]
while true:
for val in scal.mitems:
val = byte Rng.instance.rand(0xFF)
scalar.ec_scalar_from_bendian(scal)
if ec_scalar_fr_check(scalar).bool:
break
proc rndP2(x: var ec_p2, scalar: var ec_scalar): void =
## Generate random point on G2
##
x.ec_p2_from_affine(EC_G2) # init from generator
scalar.rndScalar()
x.ec_p2_mult(x, scalar, 255)
proc rndP1(x: var ec_p1, scalar: var ec_scalar): void =
## Generate random point on G1
##
x.ec_p1_from_affine(EC_G1) # init from generator
scalar.rndScalar()
x.ec_p1_mult(x, scalar, 255)
template posKeygen(x: var ec_p2, scalar: var ec_scalar): void =
## Generate POS key pair
##
rndP2(x, scalar)
proc keyGen*(): (PublicKey, SecretKey) =
## Generate key pair for signing metadata and for POS tags
##
var
pk: PublicKey
sk: SecretKey
ikm: array[32, byte]
for b in ikm.mitems:
b = byte Rng.instance.rand(0xFF)
doAssert ikm.ec_keygen(pk.signkey, sk.signkey)
posKeygen(pk.key, sk.key)
return (pk, sk)
proc sectorsCount(stream: SeekableStream, s: int64): int64 =
## Calculate number of blocks for a file
##
let
size = stream.size()
n = ((size - 1) div (s * sizeof(ZChar))) + 1
# debugEcho "File size=", size, " bytes",
# ", blocks=", n,
# ", sectors/block=", $s,
# ", sectorsize=", $sizeof(ZChar), " bytes"
return n
proc hashToG1(msg: openArray[byte]): ec_p1 =
## Hash to curve with Dagger specific domain separation
##
const dst = "DAGGER-PROOF-OF-CONCEPT"
result.ec_hash_to_g1(msg, dst, aug = "")
proc hashNameI(name: array[Namelen, byte], i: int64): ec_p1 =
## Calculate unique filname and block index based hash
##
# # naive implementation, hashing a long string representation
# # such as "[255, 242, 23]1"
# return hashToG1($name & $i)
# more compact and faster implementation
var namei: array[sizeof(name) + sizeof(int64), byte]
namei[0..sizeof(name)-1] = name
bigEndian64(addr(namei[sizeof(name)]), unsafeAddr(i))
return hashToG1(namei)
proc generateAuthenticatorNaive(
stream: SeekableStream,
ssk: SecretKey,
i: int64,
s: int64,
t: TauZero): Future[ec_p1] {.async.} =
## Naive implementation of authenticator as in the S&W paper.
## With the paper's multiplicative notation:
## \sigmai=\(H(file||i)\cdot\prod{j=0}^{s-1}{uj^{m[i][j]}})^{\alpha}
##
var sum: ec_p1
for j in 0..<s:
var prod: ec_p1
prod.ec_p1_mult(t.u[j], fromBytesBE((await stream.getSector(i, j, s))), 255)
sum.ec_p1_add_or_double(sum, prod)
ec_p1_add_or_double(result, hashNameI(t.name, i), sum)
result.ec_p1_mult(result, ssk.key, 255)
proc generateAuthenticatorOpt(
stream: SeekableStream,
ssk: SecretKey,
i: int64,
s: int64,
t: TauZero,
ubase: seq[ec_scalar]): Future[ec_p1] {.async.} =
## Optimized implementation of authenticator generation
## This implementation is reduces the number of scalar multiplications
## from s+1 to 1+1 , using knowledge about the scalars (r_j)
## used to generate u_j as u_j = g^{r_j}
##
## With the paper's multiplicative notation, we use:
## (H(file||i)\cdot g^{\sum{j=0}^{s-1}{r_j \cdot m[i][j]}})^{\alpha}
##
var sum: ec_fr
var sums: ec_scalar
for j in 0..<s:
var a, b, x: ec_fr
a.ec_fr_from_scalar(ubase[j])
b.ec_fr_from_scalar(fromBytesBE((await stream.getSector(i, j, s))))
x.ec_fr_mul(a, b)
sum.ec_fr_add(sum, x)
sums.ec_scalar_from_fr(sum)
result.ec_p1_from_affine(EC_G1)
result.ec_p1_mult(result, sums, 255)
result.ec_p1_add_or_double(result, hashNameI(t.name, i))
result.ec_p1_mult(result, ssk.key, 255)
proc generateAuthenticator(
stream: SeekableStream,
ssk: SecretKey,
i: int64,
s: int64,
t: TauZero,
ubase: seq[ec_scalar]): Future[ec_p1] =
## Wrapper to select tag generator implementation
##
# let a = generateAuthenticatorNaive(stream, ssk, i, s, t, ubase)
return generateAuthenticatorOpt(stream, ssk, i, s, t, ubase)
# doAssert(a.ec_p1_is_equal(b).bool)
proc generateQuery*(tau: Tau, l: int): seq[QElement] =
## Generata a random BLS query of given size
##
let n = tau.t.n # number of blocks
for i in 0..<l:
var q: QElement
q.I = Rng.instance.rand(n-1) #TODO: dedup
q.V.rndScalar() #TODO: fix range
result.add(q)
proc generateProof*(
stream: SeekableStream,
q: seq[QElement],
authenticators: seq[ec_p1],
s: int64): Future[Proof] {.async.} =
## Generata BLS proofs for a given query
##
var
mu: seq[ec_scalar]
for j in 0..<s:
var
muj: ec_fr
for qelem in q:
let
sect = fromBytesBE((await stream.getSector(qelem.I, j, s)))
var
x, v, sector: ec_fr
sector.ec_fr_from_scalar(sect)
v.ec_fr_from_scalar(qelem.V)
x.ec_fr_mul(v, sector)
muj.ec_fr_add(muj, x)
var
mujs: ec_scalar
mujs.ec_scalar_from_fr(muj)
mu.add(mujs)
var
sigma: ec_p1
for qelem in q:
var
prod: ec_p1
prod.ec_p1_mult(authenticators[qelem.I], qelem.V, 255)
sigma.ec_p1_add_or_double(sigma, prod)
return Proof(mu: mu, sigma: sigma)
proc verifyProof*(
self: PoR,
q: seq[QElement],
mus: seq[ec_scalar],
sigma: ec_p1): bool =
## Verify a BLS proof given a query
##
# verify signature on Tau
var signature: ec_signature
if not signature.ec_from_bytes(self.tau.signature):
return false
if not ec_verify(self.spk.signkey, $self.tau.t, signature):
return false
var first: ec_p1
for qelem in q:
var prod: ec_p1
prod.ec_p1_mult(hashNameI(self.tau.t.name, qelem.I), qelem.V, 255)
first.ec_p1_add_or_double(first, prod)
doAssert(ec_p1_on_curve(first).bool)
let us = self.tau.t.u
var second: ec_p1
for j in 0..<len(us):
var prod: ec_p1
prod.ec_p1_mult(us[j], mus[j], 255)
second.ec_p1_add_or_double(second, prod)
doAssert(ec_p1_on_curve(second).bool)
var sum: ec_p1
sum.ec_p1_add_or_double(first, second)
var g {.noInit.}: ec_p2
g.ec_p2_from_affine(EC_G2)
return verifyPairings(sum, self.spk.key, sigma, g)
proc init*(
T: type PoR,
stream: SeekableStream,
ssk: SecretKey,
spk: PublicKey,
blockSize: int64): Future[PoR] {.async.} =
## Set up the POR scheme by generating tags and metadata
##
doAssert(
(blockSize mod BytesPerSector) == 0,
"Block size should be divisible by `BytesPerSector`")
let
s = blockSize div BytesPerSector
n = stream.sectorsCount(s)
# generate a random name
var t = TauZero(n: n)
for i in 0..<Namelen:
t.name[i] = byte Rng.instance.rand(0xFF)
# generate the coefficient vector for combining sectors of a block: U
var ubase: seq[ec_scalar]
for i in 0..<s:
var
u: ec_p1
ub: ec_scalar
rndP1(u, ub)
t.u.add(u)
ubase.add(ub)
#TODO: a better bytearray conversion of TauZero for the signature might be needed
# the current conversion using $t might be architecture dependent and not unique
let
signature = ec_sign(ssk.signkey, $t)
tau = Tau(t: t, signature: signature.ec_export_raw())
# generate sigmas
var
sigmas: seq[ec_p1]
for i in 0..<n:
sigmas.add((await stream.generateAuthenticator(ssk, i, s, t, ubase)))
return PoR(
ssk: ssk,
spk: spk,
tau: tau,
authenticators: sigmas)