481 lines
12 KiB
Nim
481 lines
12 KiB
Nim
## Nim-Codex
|
||
## Copyright (c) 2021 Status Research & Development GmbH
|
||
## Licensed under either of
|
||
## * Apache License, version 2.0, ([LICENSE-APACHE](LICENSE-APACHE))
|
||
## * MIT license ([LICENSE-MIT](LICENSE-MIT))
|
||
## at your option.
|
||
## This file may not be copied, modified, or distributed except according to
|
||
## those terms.
|
||
|
||
# Implementation of the BLS-based public PoS scheme from
|
||
# Shacham H., Waters B., "Compact Proofs of Retrievability"
|
||
# using pairing over BLS12-381 ECC
|
||
#
|
||
# Notation from the paper
|
||
# In Z:
|
||
# - n: number of blocks
|
||
# - s: number of sectors per block
|
||
#
|
||
# In Z_p: modulo curve order
|
||
# - m_{ij}: sectors of the file i:0..n-1 j:0..s-1
|
||
# - α: PoS secret key
|
||
# - name: random string
|
||
# - μ_j: part of proof, j:0..s-1
|
||
#
|
||
# In G_1: multiplicative cyclic group
|
||
# - H: {0,1}∗ →G_1 : hash function
|
||
# - u_1,…,u_s ←R G_1 : random coefficients
|
||
# - σ_i: authenticators
|
||
# - σ: part of proof
|
||
#
|
||
# In G_2: multiplicative cyclic group
|
||
# - g: generator of G_2
|
||
# - v ← g^α: PoS public key
|
||
#
|
||
# In G_T:
|
||
# - used only to calculate the two pairings during validation
|
||
#
|
||
# Implementation:
|
||
# Our implementation uses additive cyclic groups instead of the multiplicative
|
||
# cyclic group in the paper, thus changing the name of the group operation as in
|
||
# blscurve and blst. Thus, point multiplication becomes point addition, and scalar
|
||
# exponentiation becomes scalar multiplicaiton.
|
||
#
|
||
# Number of operations:
|
||
# The following table summarizes the number of operations in different phases
|
||
# using the following notation:
|
||
# - f: file size expressed in units of 31 bytes
|
||
# - n: number of blocks
|
||
# - s: number of sectors per block
|
||
# - q: number of query items
|
||
#
|
||
# Since f = n * s and s is a parameter of the scheme, it is better to express
|
||
# the cost as a function of f and s. This only matters for Setup, all other
|
||
# phases are independent of the file size assuming a given q.
|
||
#
|
||
# | | Setup | Challenge | Proof | Verify |
|
||
# |----------------|-----------|---------------|-----------|-----------|-----------|
|
||
# | G1 random | s = s | q | | |
|
||
# | G1 scalar mult | n * (s+1) = f * (1 + 1/s) | | q | q + s |
|
||
# | G1 add | n * s = f | | q-1 | q-1 + s-1 |
|
||
# | Hash to G1 | n = f / s | | | q |
|
||
# | Z_p mult | = | | s * q | |
|
||
# | Z_p add | = | | s * (q-1) | |
|
||
# | pairing | = | | | 2 |
|
||
#
|
||
#
|
||
# Storage and communication cost:
|
||
# The storage overhead for a file of f_b bytes is given by the n authenticators
|
||
# calculated in the setup phase.
|
||
# f_b = f * 31 = n * s * 31
|
||
# Each authenticator is a point on G_1, which occupies 48 bytes in compressed form.
|
||
# Thus, the overall sorage size in bytes is:
|
||
# f_pos = fb + n * 48 = fb * (1 + (48/31) * (1/s))
|
||
#
|
||
# Communicaiton cost in the Setup phase is simply related to the storage cost.
|
||
# The size of the challenge is
|
||
# q * (8 + 48) bytes
|
||
# The size of the proof is instead
|
||
# s * 32 + 48 bytes
|
||
import std/endians
|
||
|
||
import pkg/chronos
|
||
import pkg/blscurve
|
||
import pkg/blscurve/blst/blst_abi
|
||
|
||
import ../../rng
|
||
import ../../streams
|
||
|
||
# sector size in bytes. Must be smaller than the subgroup order r
|
||
# which is 255 bits long for BLS12-381
|
||
const
|
||
BytesPerSector* = 31
|
||
|
||
# length in bytes of the unique (random) name
|
||
Namelen = 512
|
||
|
||
type
|
||
# a single sector
|
||
ZChar* = array[BytesPerSector, byte]
|
||
|
||
# secret key combining the metadata signing key and the POR generation key
|
||
SecretKey* = object
|
||
signkey*: blscurve.SecretKey
|
||
key*: blst_scalar
|
||
|
||
# public key combining the metadata signing key and the POR validation key
|
||
PublicKey* = object
|
||
signkey*: blscurve.PublicKey
|
||
key*: blst_p2
|
||
|
||
# POR metadata (called "file tag t_0" in the original paper)
|
||
TauZero* = object
|
||
name*: array[Namelen, byte]
|
||
n*: int64
|
||
u*: seq[blst_p1]
|
||
|
||
# signed POR metadata (called "signed file tag t" in the original paper)
|
||
Tau* = object
|
||
t*: TauZero
|
||
signature*: array[96, byte]
|
||
|
||
Proof* = object
|
||
mu*: seq[blst_scalar]
|
||
sigma*: blst_p1
|
||
|
||
# PoR query element
|
||
QElement* = object
|
||
i*: int64
|
||
v*: blst_scalar
|
||
|
||
PoR* = object
|
||
ssk*: SecretKey
|
||
spk*: PublicKey
|
||
tau*: Tau
|
||
authenticators*: seq[blst_p1]
|
||
|
||
proc fromBytesBE(a: openArray[byte]): blst_scalar =
|
||
## Convert data to blst native form
|
||
##
|
||
|
||
var b: array[32, byte]
|
||
doAssert(a.len <= b.len)
|
||
|
||
let d = b.len - a.len
|
||
for i in 0..<a.len:
|
||
b[i+d] = a[i]
|
||
|
||
blst_scalar_from_bendian(result, b)
|
||
doAssert(blst_scalar_fr_check(result).bool)
|
||
|
||
proc getSector(
|
||
stream: SeekableStream,
|
||
blockId: int64,
|
||
sectorId: int64,
|
||
spb: int64): Future[ZChar] {.async.} =
|
||
## Read file sector at given <blockid, sectorid> postion
|
||
##
|
||
|
||
var res: ZChar
|
||
stream.setPos(((blockId * spb + sectorId) * ZChar.len).int)
|
||
discard await stream.readOnce(addr res[0], ZChar.len)
|
||
return res
|
||
|
||
proc rndScalar(): blst_scalar =
|
||
## Generate random scalar within the subroup order r
|
||
##
|
||
|
||
var scal : array[32, byte]
|
||
var scalar : blst_scalar
|
||
|
||
while true:
|
||
for val in scal.mitems:
|
||
val = byte Rng.instance.rand(0xFF)
|
||
|
||
scalar.blst_scalar_from_bendian(scal)
|
||
if blst_scalar_fr_check(scalar).bool:
|
||
break
|
||
|
||
return scalar
|
||
|
||
proc rndP2(): (blst_p2, blst_scalar) =
|
||
## Generate random point on G2
|
||
##
|
||
|
||
var
|
||
x : blst_p2
|
||
x.blst_p2_from_affine(BLS12_381_G2) # init from generator
|
||
|
||
let
|
||
scalar = rndScalar()
|
||
x.blst_p2_mult(x, scalar, 255)
|
||
|
||
return (x, scalar)
|
||
|
||
proc rndP1(): (blst_p1, blst_scalar) =
|
||
## Generate random point on G1
|
||
var
|
||
x : blst_p1
|
||
x.blst_p1_from_affine(BLS12_381_G1) # init from generator
|
||
|
||
let
|
||
scalar = rndScalar()
|
||
x.blst_p1_mult(x, scalar, 255)
|
||
|
||
return (x, scalar)
|
||
|
||
template posKeygen(): (blst_p2, blst_scalar) =
|
||
## Generate POS key pair
|
||
##
|
||
|
||
rndP2()
|
||
|
||
proc keyGen*(): (PublicKey, SecretKey) =
|
||
## Generate key pair for signing metadata and for POS tags
|
||
##
|
||
|
||
var
|
||
pk: PublicKey
|
||
sk: SecretKey
|
||
ikm: array[32, byte]
|
||
|
||
for b in ikm.mitems:
|
||
b = byte Rng.instance.rand(0xFF)
|
||
|
||
doAssert ikm.keyGen(pk.signkey, sk.signkey)
|
||
|
||
(pk.key, sk.key) = posKeygen()
|
||
return (pk, sk)
|
||
|
||
proc sectorsCount(stream: SeekableStream, s: int64): int64 =
|
||
## Calculate number of blocks for a file
|
||
##
|
||
|
||
let
|
||
size = stream.size()
|
||
n = ((size - 1) div (s * sizeof(ZChar))) + 1
|
||
# debugEcho "File size=", size, " bytes",
|
||
# ", blocks=", n,
|
||
# ", sectors/block=", $s,
|
||
# ", sectorsize=", $sizeof(ZChar), " bytes"
|
||
|
||
return n
|
||
|
||
proc hashToG1[T: byte|char](msg: openArray[T]): blst_p1 =
|
||
## Hash to curve with Dagger specific domain separation
|
||
##
|
||
|
||
const dst = "DAGGER-PROOF-OF-CONCEPT"
|
||
result.blst_hash_to_g1(msg, dst, aug = "")
|
||
|
||
proc hashNameI(name: array[Namelen, byte], i: int64): blst_p1 =
|
||
## Calculate unique filename and block index based hash
|
||
##
|
||
|
||
# # naive implementation, hashing a long string representation
|
||
# # such as "[255, 242, 23]1"
|
||
# return hashToG1($name & $i)
|
||
|
||
# more compact and faster implementation
|
||
var namei: array[sizeof(name) + sizeof(int64), byte]
|
||
namei[0..sizeof(name)-1] = name
|
||
bigEndian64(addr(namei[sizeof(name)]), unsafeAddr(i))
|
||
return hashToG1(namei)
|
||
|
||
proc generateAuthenticatorOpt(
|
||
stream: SeekableStream,
|
||
ssk: SecretKey,
|
||
i: int64,
|
||
s: int64,
|
||
t: TauZero,
|
||
ubase: seq[blst_scalar]): Future[blst_p1] {.async.} =
|
||
## Optimized implementation of authenticator generation
|
||
## This implementation is reduces the number of scalar multiplications
|
||
## from s+1 to 1+1 , using knowledge about the scalars (r_j)
|
||
## used to generate u_j as u_j = g^{r_j}
|
||
##
|
||
## With the paper's multiplicative notation, we use:
|
||
## (H(file||i)\cdot g^{\sum{j=0}^{s-1}{r_j \cdot m[i][j]}})^{\alpha}
|
||
##
|
||
|
||
var sum: blst_fr
|
||
var sums: blst_scalar
|
||
for j in 0..<s:
|
||
var a, b, x: blst_fr
|
||
a.blst_fr_from_scalar(ubase[j])
|
||
b.blst_fr_from_scalar(fromBytesBE((await stream.getSector(i, j, s))))
|
||
x.blst_fr_mul(a, b)
|
||
sum.blst_fr_add(sum, x)
|
||
sums.blst_scalar_from_fr(sum)
|
||
|
||
result.blst_p1_from_affine(BLS12_381_G1)
|
||
result.blst_p1_mult(result, sums, 255)
|
||
|
||
result.blst_p1_add_or_double(result, hashNameI(t.name, i))
|
||
result.blst_p1_mult(result, ssk.key, 255)
|
||
|
||
proc generateAuthenticator(
|
||
stream: SeekableStream,
|
||
ssk: SecretKey,
|
||
i: int64,
|
||
s: int64,
|
||
t: TauZero,
|
||
ubase: seq[blst_scalar]): Future[blst_p1] =
|
||
## Wrapper to select tag generator implementation
|
||
##
|
||
|
||
# let a = generateAuthenticatorNaive(i, s, t, f, ssk)
|
||
return generateAuthenticatorOpt(stream, ssk, i, s, t, ubase)
|
||
# doAssert(a.blst_p1_is_equal(b).bool)
|
||
|
||
proc generateQuery*(tau: Tau, l: int): seq[QElement] =
|
||
## Generata a random BLS query of given size
|
||
##
|
||
|
||
let n = tau.t.n # number of blocks
|
||
|
||
for i in 0..<l:
|
||
var q: QElement
|
||
q.i = Rng.instance.rand(n-1) #TODO: dedup
|
||
q.v = rndScalar() #TODO: fix range
|
||
result.add(q)
|
||
|
||
proc generateProof*(
|
||
stream: SeekableStream,
|
||
q: seq[QElement],
|
||
authenticators: seq[blst_p1],
|
||
s: int64): Future[Proof] {.async.} =
|
||
## Generata BLS proofs for a given query
|
||
##
|
||
|
||
var
|
||
mu: seq[blst_scalar]
|
||
|
||
for j in 0..<s:
|
||
var
|
||
muj: blst_fr
|
||
|
||
for qelem in q:
|
||
let
|
||
sect = fromBytesBE((await stream.getSector(qelem.i, j, s)))
|
||
|
||
var
|
||
x, v, sector: blst_fr
|
||
|
||
sector.blst_fr_from_scalar(sect)
|
||
v.blst_fr_from_scalar(qelem.v)
|
||
x.blst_fr_mul(v, sector)
|
||
muj.blst_fr_add(muj, x)
|
||
|
||
var
|
||
mujs: blst_scalar
|
||
|
||
mujs.blst_scalar_from_fr(muj)
|
||
mu.add(mujs)
|
||
|
||
var
|
||
sigma: blst_p1
|
||
|
||
for qelem in q:
|
||
var
|
||
prod: blst_p1
|
||
|
||
prod.blst_p1_mult(authenticators[qelem.i], qelem.v, 255)
|
||
sigma.blst_p1_add_or_double(sigma, prod)
|
||
|
||
return Proof(mu: mu, sigma: sigma)
|
||
|
||
proc pairing(a: blst_p1, b: blst_p2): blst_fp12 =
|
||
## Calculate pairing G_1,G_2 -> G_T
|
||
##
|
||
|
||
var
|
||
aa: blst_p1_affine
|
||
bb: blst_p2_affine
|
||
l: blst_fp12
|
||
|
||
blst_p1_to_affine(aa, a)
|
||
blst_p2_to_affine(bb, b)
|
||
|
||
blst_miller_loop(l, bb, aa)
|
||
blst_final_exp(result, l)
|
||
|
||
proc verifyPairingsNaive(a1: blst_p1, a2: blst_p2, b1: blst_p1, b2: blst_p2) : bool =
|
||
let e1 = pairing(a1, a2)
|
||
let e2 = pairing(b1, b2)
|
||
return e1 == e2
|
||
|
||
proc verifyPairings(a1: blst_p1, a2: blst_p2, b1: blst_p1, b2: blst_p2) : bool =
|
||
## Wrapper to select verify pairings implementation
|
||
##
|
||
|
||
verifyPairingsNaive(a1, a2, b1, b2)
|
||
#verifyPairingsNeg(a1, a2, b1, b2)
|
||
|
||
proc verifyProof*(
|
||
self: PoR,
|
||
q: seq[QElement],
|
||
mus: seq[blst_scalar],
|
||
sigma: blst_p1): bool =
|
||
## Verify a BLS proof given a query
|
||
##
|
||
|
||
# verify signature on Tau
|
||
var signature: blscurve.Signature
|
||
if not signature.fromBytes(self.tau.signature):
|
||
return false
|
||
|
||
if not verify(self.spk.signkey, $self.tau.t, signature):
|
||
return false
|
||
|
||
var first: blst_p1
|
||
for qelem in q:
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(hashNameI(self.tau.t.name, qelem.i), qelem.v, 255)
|
||
first.blst_p1_add_or_double(first, prod)
|
||
doAssert(blst_p1_on_curve(first).bool)
|
||
|
||
let us = self.tau.t.u
|
||
var second: blst_p1
|
||
for j in 0..<len(us):
|
||
var prod: blst_p1
|
||
prod.blst_p1_mult(us[j], mus[j], 255)
|
||
second.blst_p1_add_or_double(second, prod)
|
||
doAssert(blst_p1_on_curve(second).bool)
|
||
|
||
var sum: blst_p1
|
||
sum.blst_p1_add_or_double(first, second)
|
||
|
||
var g : blst_p2
|
||
g.blst_p2_from_affine(BLS12_381_G2)
|
||
|
||
return verifyPairings(sum, self.spk.key, sigma, g)
|
||
|
||
proc init*(
|
||
T: type PoR,
|
||
stream: SeekableStream,
|
||
ssk: SecretKey,
|
||
spk: PublicKey,
|
||
blockSize: int64): Future[PoR] {.async.} =
|
||
## Set up the POR scheme by generating tags and metadata
|
||
##
|
||
|
||
doAssert(
|
||
(blockSize mod BytesPerSector) == 0,
|
||
"Block size should be divisible by `BytesPerSector`")
|
||
|
||
let
|
||
s = blockSize div BytesPerSector
|
||
n = stream.sectorsCount(s)
|
||
|
||
# generate a random name
|
||
var t = TauZero(n: n)
|
||
for i in 0..<Namelen:
|
||
t.name[i] = byte Rng.instance.rand(0xFF)
|
||
|
||
# generate the coefficient vector for combining sectors of a block: U
|
||
var ubase: seq[blst_scalar]
|
||
for i in 0..<s:
|
||
let (u, ub) = rndP1()
|
||
t.u.add(u)
|
||
ubase.add(ub)
|
||
|
||
#TODO: a better bytearray conversion of TauZero for the signature might be needed
|
||
# the current conversion using $t might be architecture dependent and not unique
|
||
let
|
||
signature = sign(ssk.signkey, $t)
|
||
tau = Tau(t: t, signature: signature.exportRaw())
|
||
|
||
# generate sigmas
|
||
var
|
||
sigmas: seq[blst_p1]
|
||
|
||
for i in 0..<n:
|
||
sigmas.add((await stream.generateAuthenticator(ssk, i, s, t, ubase)))
|
||
|
||
return PoR(
|
||
ssk: ssk,
|
||
spk: spk,
|
||
tau: tau,
|
||
authenticators: sigmas)
|