634 lines
22 KiB
Nim
Raw Normal View History

# codex-dht - Codex DHT
# Copyright (c) 2022 Status Research & Development GmbH
# Licensed and distributed under either of
# * MIT license (license terms in the root directory or at https://opensource.org/licenses/MIT).
# * Apache v2 license (license terms in the root directory or at https://www.apache.org/licenses/LICENSE-2.0).
# at your option. This file may not be copied, modified, or distributed except according to those terms.
#
## Discovery v5 packet encoding as specified at
## https://github.com/ethereum/devp2p/blob/master/discv5/discv5-wire.md#packet-encoding
## And handshake/sessions as specified at
## https://github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md#sessions
##
{.push raises: [Defect].}
import
std/[hashes, net, options, sugar, tables],
stew/endians2,
bearssl/rand,
chronicles,
stew/[results, byteutils],
stint,
libp2p/crypto/crypto as libp2p_crypto,
libp2p/crypto/secp,
libp2p/signed_envelope,
metrics,
nimcrypto,
"."/[messages, messages_encoding, node, spr, hkdf, sessions],
"."/crypto
from nimcrypto/utils import toHex
from stew/objects import checkedEnumAssign
export crypto
declareCounter discovery_session_lru_cache_hits, "Session LRU cache hits"
declareCounter discovery_session_lru_cache_misses, "Session LRU cache misses"
declareCounter discovery_session_decrypt_failures, "Session decrypt failures"
logScope:
topics = "discv5"
type
cipher = aes128
const
version: uint16 = 1
idSignatureText = "discovery v5 identity proof"
keyAgreementPrefix = "discovery v5 key agreement"
protocolIdStr = "discv5"
protocolId = toBytes(protocolIdStr)
gcmNonceSize* = 12
idNonceSize* = 16
gcmTagSize* = 16
ivSize* = 16
staticHeaderSize = protocolId.len + 2 + 2 + 1 + gcmNonceSize
authdataHeadSize = sizeof(NodeId) + 1 + 1
whoareyouSize = ivSize + staticHeaderSize + idNonceSize + 8
type
AESGCMNonce* = array[gcmNonceSize, byte]
IdNonce* = array[idNonceSize, byte]
WhoareyouData* = object
requestNonce*: AESGCMNonce
idNonce*: IdNonce # TODO: This data is also available in challengeData
recordSeq*: uint64
challengeData*: seq[byte]
Challenge* = object
whoareyouData*: WhoareyouData
pubkey*: Option[PublicKey]
StaticHeader* = object
flag: Flag
nonce: AESGCMNonce
authdataSize: uint16
HandshakeSecrets* = object
initiatorKey*: AesKey
recipientKey*: AesKey
Flag* = enum
OrdinaryMessage = 0x00
Whoareyou = 0x01
HandshakeMessage = 0x02
Packet* = object
case flag*: Flag
of OrdinaryMessage:
messageOpt*: Option[Message]
requestNonce*: AESGCMNonce
srcId*: NodeId
of Whoareyou:
whoareyou*: WhoareyouData
of HandshakeMessage:
message*: Message # In a handshake we expect to always be able to decrypt
# TODO record or node immediately?
node*: Option[Node]
srcIdHs*: NodeId
HandshakeKey* = object
nodeId*: NodeId
address*: Address
Codec* = object
localNode*: Node
privKey*: PrivateKey
handshakes*: Table[HandshakeKey, Challenge]
sessions*: Sessions
EncodeResult*[T] = Result[T, cstring]
DecodeResult*[T] = Result[T, cstring]
CryptoResult*[T] = Result[T, CryptoError]
func `==`*(a, b: HandshakeKey): bool =
(a.nodeId == b.nodeId) and (a.address == b.address)
func hash*(key: HandshakeKey): Hash =
result = key.nodeId.hash !& key.address.hash
result = !$result
proc idHash(challengeData, ephkey: openArray[byte], nodeId: NodeId):
MDigest[256] =
var ctx: sha256
ctx.init()
ctx.update(idSignatureText)
ctx.update(challengeData)
ctx.update(ephkey)
ctx.update(nodeId.toByteArrayBE())
result = ctx.finish()
ctx.clear()
proc createIdSignature*(privKey: PrivateKey, challengeData,
ephKey: openArray[byte], nodeId: NodeId): EncodeResult[Signature] =
let h = idHash(challengeData, ephKey, nodeId)
sign(privKey, h.data).mapErr(e =>
("Failed to sign challegene data: " & $e).cstring)
proc verifyIdSignature*(sig: Signature, challengeData, ephKey: openArray[byte],
nodeId: NodeId, pubkey: PublicKey): bool =
let h = idHash(challengeData, ephKey, nodeId)
verify(sig, h.data, pubkey)
proc deriveKeys*(n1, n2: NodeId, priv: PrivateKey, pub: PublicKey,
challengeData: openArray[byte]): EncodeResult[HandshakeSecrets] =
let eph = ? ecdhRaw(priv, pub)
var info = newSeqOfCap[byte](keyAgreementPrefix.len + 32 * 2)
for i, c in keyAgreementPrefix: info.add(byte(c))
info.add(n1.toByteArrayBE())
info.add(n2.toByteArrayBE())
var secrets: HandshakeSecrets
static: assert(sizeof(secrets) == aesKeySize * 2)
var res = cast[ptr UncheckedArray[byte]](addr secrets)
hkdf(sha256, eph.data, challengeData, info,
toOpenArray(res, 0, sizeof(secrets) - 1))
ok secrets
proc encryptGCM*(key: AesKey, nonce, pt, authData: openArray[byte]): seq[byte] =
var ectx: GCM[cipher]
ectx.init(key, nonce, authData)
result = newSeq[byte](pt.len + gcmTagSize)
ectx.encrypt(pt, result)
ectx.getTag(result.toOpenArray(pt.len, result.high))
ectx.clear()
proc decryptGCM*(key: AesKey, nonce, ct, authData: openArray[byte]):
Option[seq[byte]] =
if ct.len <= gcmTagSize:
debug "cipher is missing tag", len = ct.len
return
var dctx: GCM[cipher]
dctx.init(key, nonce, authData)
var res = newSeq[byte](ct.len - gcmTagSize)
var tag: array[gcmTagSize, byte]
dctx.decrypt(ct.toOpenArray(0, ct.high - gcmTagSize), res)
dctx.getTag(tag)
dctx.clear()
if tag != ct.toOpenArray(ct.len - gcmTagSize, ct.high):
return
return some(res)
proc encryptHeader*(id: NodeId, iv, header: openArray[byte]): seq[byte] =
var ectx: CTR[cipher]
ectx.init(id.toByteArrayBE().toOpenArray(0, 15), iv)
result = newSeq[byte](header.len)
ectx.encrypt(header, result)
ectx.clear()
proc hasHandshake*(c: Codec, key: HandshakeKey): bool =
c.handshakes.hasKey(key)
proc encodeStaticHeader*(flag: Flag, nonce: AESGCMNonce, authSize: int):
seq[byte] =
result.add(protocolId)
result.add(endians2.toBytesBE(version))
result.add(byte(flag))
result.add(nonce)
# TODO: assert on authSize of > 2^16?
result.add((uint16(authSize)).toBytesBE())
proc encodeMessagePacket*(rng: var HmacDrbgContext, c: var Codec,
toId: NodeId, toAddr: Address, message: openArray[byte]):
(seq[byte], AESGCMNonce, bool) =
var nonce: AESGCMNonce
var haskey: bool
hmacDrbgGenerate(rng, nonce) # Random AESGCM nonce
var iv: array[ivSize, byte]
hmacDrbgGenerate(rng, iv) # Random IV
# static-header
let authdata = c.localNode.id.toByteArrayBE()
let staticHeader = encodeStaticHeader(Flag.OrdinaryMessage, nonce,
authdata.len())
# header = static-header || authdata
var header: seq[byte]
header.add(staticHeader)
header.add(authdata)
# message
var messageEncrypted: seq[byte]
Fix: arrive to working keys in case of simultaneous cross connect (#84) * improve tracing of message exchange run e.g. as ``` nim c -r -d:debug -d:chronicles_enabled=on -d:chronicles_log_level=TRACE -d:chronicles_sinks=textlines[nocolors,stdout] tests/dht/test_providers.nim >err ``` Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add debug on Handshake timeour Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * queue messages during handshake and send later If a handshake was already in progress, messages were dropped. Instead of this, it is better to queue these and send as soon as the handshake is finished and thus the encryption key is known. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * rename handshakeInProgress to keyexchangeInProgress Handshake is also a name of a message, which makes previous name less clear. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * keyexchangeInProgress: do not remove on handshake received This is the wrong direction, not needed Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix cross-connect key exchange Since key exchange can be started both ways simultaneously, and these might not get finalised with UDP transport, we can't be sure what encryption key will be used by the other side: - the one derived in the key-exchange started by us, - the one derived in the key-exchange started by the other node. To alleviate this issue, we store two decryption keys in each session. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> --------- Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com>
2023-11-17 20:50:28 +01:00
var initiatorKey, recipientKey1, recipientKey2: AesKey
if c.sessions.load(toId, toAddr, recipientKey1, recipientKey2, initiatorKey):
haskey = true
messageEncrypted = encryptGCM(initiatorKey, nonce, message, @iv & header)
discovery_session_lru_cache_hits.inc()
else:
# We might not have the node's keys if the handshake hasn't been performed
# yet. That's fine, we send a random-packet and we will be responded with
# a WHOAREYOU packet.
# Select 20 bytes of random data, which is the smallest possible ping
# message. 16 bytes for the gcm tag and 4 bytes for ping with requestId of
# 1 byte (e.g "01c20101"). Could increase to 27 for 8 bytes requestId in
# case this must not look like a random packet.
haskey = false
var randomData: array[gcmTagSize + 4, byte]
hmacDrbgGenerate(rng, randomData)
messageEncrypted.add(randomData)
discovery_session_lru_cache_misses.inc()
let maskedHeader = encryptHeader(toId, iv, header)
var packet: seq[byte]
packet.add(iv)
packet.add(maskedHeader)
packet.add(messageEncrypted)
return (packet, nonce, haskey)
proc encodeWhoareyouPacket*(rng: var HmacDrbgContext, c: var Codec,
toId: NodeId, toAddr: Address, requestNonce: AESGCMNonce, recordSeq: uint64,
pubkey: Option[PublicKey]): seq[byte] =
var idNonce: IdNonce
hmacDrbgGenerate(rng, idNonce)
# authdata
var authdata: seq[byte]
authdata.add(idNonce)
authdata.add(recordSeq.toBytesBE)
# static-header
let staticHeader = encodeStaticHeader(Flag.Whoareyou, requestNonce,
authdata.len())
# header = static-header || authdata
var header: seq[byte]
header.add(staticHeader)
header.add(authdata)
var iv: array[ivSize, byte]
hmacDrbgGenerate(rng, iv) # Random IV
let maskedHeader = encryptHeader(toId, iv, header)
var packet: seq[byte]
packet.add(iv)
packet.add(maskedHeader)
let
whoareyouData = WhoareyouData(
requestNonce: requestNonce,
idNonce: idNonce,
recordSeq: recordSeq,
challengeData: @iv & header)
challenge = Challenge(whoareyouData: whoareyouData, pubkey: pubkey)
key = HandshakeKey(nodeId: toId, address: toAddr)
c.handshakes[key] = challenge
return packet
proc encodeHandshakePacket*(rng: var HmacDrbgContext, c: var Codec,
toId: NodeId, toAddr: Address, message: openArray[byte],
whoareyouData: WhoareyouData, pubkey: PublicKey): EncodeResult[seq[byte]] =
var header: seq[byte]
var nonce: AESGCMNonce
hmacDrbgGenerate(rng, nonce)
var iv: array[ivSize, byte]
hmacDrbgGenerate(rng, iv) # Random IV
var authdata: seq[byte]
var authdataHead: seq[byte]
authdataHead.add(c.localNode.id.toByteArrayBE())
let ephKeys = ? KeyPair.random(PKScheme.Secp256k1, rng)
.mapErr((e: CryptoError) =>
("Failed to create random key pair: " & $e).cstring)
# TODO: Do we need to support non-secp256k1 schemes?
if ephKeys.pubkey.scheme != Secp256k1:
return err "Crypto scheme must be secp256k1".cstring
let
pubKeyRaw = ? ephKeys.pubkey.getBytes().mapErr((e: CryptoError) =>
("Failed to serialize public key: " & $e).cstring)
signature = ? createIdSignature(
c.privKey,
whoareyouData.challengeData,
pubKeyRaw,
toId)
let sigBytes = signature.getBytes()
authdataHead.add(sigBytes.len.uint8) # DER variable, less than 72 bytes
authdataHead.add(pubKeyRaw.len.uint8) # eph-key-size: 33
authdata.add(authdataHead)
authdata.add(sigBytes)
# compressed pub key format (33 bytes)
authdata.add(pubKeyRaw)
# Add SPR of sequence number is newer
if whoareyouData.recordSeq < c.localNode.record.seqNum:
let encoded = ? c.localNode.record.encode.mapErr((e: CryptoError) =>
("Failed to encode local node's SignedPeerRecord: " & $e).cstring)
authdata.add(encoded)
let secrets = ? deriveKeys(
c.localNode.id,
toId,
ephKeys.seckey,
pubkey,
whoareyouData.challengeData)
# Header
let staticHeader = encodeStaticHeader(Flag.HandshakeMessage, nonce,
authdata.len())
header.add(staticHeader)
header.add(authdata)
c.sessions.store(toId, toAddr, secrets.recipientKey, secrets.initiatorKey)
let messageEncrypted = encryptGCM(secrets.initiatorKey, nonce, message,
@iv & header)
let maskedHeader = encryptHeader(toId, iv, header)
var packet: seq[byte]
packet.add(iv)
packet.add(maskedHeader)
packet.add(messageEncrypted)
return ok packet
proc decodeHeader*(id: NodeId, iv, maskedHeader: openArray[byte]):
DecodeResult[(StaticHeader, seq[byte])] =
# No need to check staticHeader size as that is included in minimum packet
# size check in decodePacket
var ectx: CTR[cipher]
ectx.init(id.toByteArrayBE().toOpenArray(0, aesKeySize - 1), iv)
# Decrypt static-header part of the header
var staticHeader = newSeq[byte](staticHeaderSize)
ectx.decrypt(maskedHeader.toOpenArray(0, staticHeaderSize - 1), staticHeader)
# Check fields of the static-header
if staticHeader.toOpenArray(0, protocolId.len - 1) != protocolId:
return err("Invalid protocol id")
if uint16.fromBytesBE(staticHeader.toOpenArray(6, 7)) != version:
return err("Invalid protocol version")
var flag: Flag
if not checkedEnumAssign(flag, staticHeader[8]):
return err("Invalid packet flag")
var nonce: AESGCMNonce
copyMem(addr nonce[0], unsafeAddr staticHeader[9], gcmNonceSize)
let authdataSize = uint16.fromBytesBE(staticHeader.toOpenArray(21,
staticHeader.high))
# Input should have minimum size of staticHeader + provided authdata size
# Can be larger as there can come a message after.
if maskedHeader.len < staticHeaderSize + int(authdataSize):
return err("Authdata is smaller than authdata-size indicates")
var authdata = newSeq[byte](int(authdataSize))
ectx.decrypt(maskedHeader.toOpenArray(staticHeaderSize,
staticHeaderSize + int(authdataSize) - 1), authdata)
ectx.clear()
ok((StaticHeader(authdataSize: authdataSize, flag: flag, nonce: nonce),
staticHeader & authdata))
proc decodeMessagePacket(c: var Codec, fromAddr: Address, nonce: AESGCMNonce,
iv, header, ct: openArray[byte]): DecodeResult[Packet] =
# We now know the exact size that the header should be
if header.len != staticHeaderSize + sizeof(NodeId):
return err("Invalid header length for ordinary message packet")
# Need to have at minimum the gcm tag size for the message.
if ct.len < gcmTagSize:
return err("Invalid message length for ordinary message packet")
let srcId = NodeId.fromBytesBE(header.toOpenArray(staticHeaderSize,
header.high))
Fix: arrive to working keys in case of simultaneous cross connect (#84) * improve tracing of message exchange run e.g. as ``` nim c -r -d:debug -d:chronicles_enabled=on -d:chronicles_log_level=TRACE -d:chronicles_sinks=textlines[nocolors,stdout] tests/dht/test_providers.nim >err ``` Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add debug on Handshake timeour Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * queue messages during handshake and send later If a handshake was already in progress, messages were dropped. Instead of this, it is better to queue these and send as soon as the handshake is finished and thus the encryption key is known. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * rename handshakeInProgress to keyexchangeInProgress Handshake is also a name of a message, which makes previous name less clear. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * keyexchangeInProgress: do not remove on handshake received This is the wrong direction, not needed Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix cross-connect key exchange Since key exchange can be started both ways simultaneously, and these might not get finalised with UDP transport, we can't be sure what encryption key will be used by the other side: - the one derived in the key-exchange started by us, - the one derived in the key-exchange started by the other node. To alleviate this issue, we store two decryption keys in each session. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> --------- Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com>
2023-11-17 20:50:28 +01:00
var initiatorKey, recipientKey1, recipientKey2: AesKey
if not c.sessions.load(srcId, fromAddr, recipientKey1, recipientKey2, initiatorKey):
# Don't consider this an error, simply haven't done a handshake yet or
# the session got removed.
trace "Decrypting failed (no keys)"
discovery_session_lru_cache_misses.inc()
return ok(Packet(flag: Flag.OrdinaryMessage, requestNonce: nonce,
srcId: srcId))
discovery_session_lru_cache_hits.inc()
Fix: arrive to working keys in case of simultaneous cross connect (#84) * improve tracing of message exchange run e.g. as ``` nim c -r -d:debug -d:chronicles_enabled=on -d:chronicles_log_level=TRACE -d:chronicles_sinks=textlines[nocolors,stdout] tests/dht/test_providers.nim >err ``` Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add debug on Handshake timeour Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * queue messages during handshake and send later If a handshake was already in progress, messages were dropped. Instead of this, it is better to queue these and send as soon as the handshake is finished and thus the encryption key is known. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * rename handshakeInProgress to keyexchangeInProgress Handshake is also a name of a message, which makes previous name less clear. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * keyexchangeInProgress: do not remove on handshake received This is the wrong direction, not needed Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix cross-connect key exchange Since key exchange can be started both ways simultaneously, and these might not get finalised with UDP transport, we can't be sure what encryption key will be used by the other side: - the one derived in the key-exchange started by us, - the one derived in the key-exchange started by the other node. To alleviate this issue, we store two decryption keys in each session. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> --------- Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com>
2023-11-17 20:50:28 +01:00
var pt = decryptGCM(recipientKey2, nonce, ct, @iv & @header)
if pt.isNone():
Fix: arrive to working keys in case of simultaneous cross connect (#84) * improve tracing of message exchange run e.g. as ``` nim c -r -d:debug -d:chronicles_enabled=on -d:chronicles_log_level=TRACE -d:chronicles_sinks=textlines[nocolors,stdout] tests/dht/test_providers.nim >err ``` Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add debug on Handshake timeour Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * queue messages during handshake and send later If a handshake was already in progress, messages were dropped. Instead of this, it is better to queue these and send as soon as the handshake is finished and thus the encryption key is known. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * rename handshakeInProgress to keyexchangeInProgress Handshake is also a name of a message, which makes previous name less clear. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * keyexchangeInProgress: do not remove on handshake received This is the wrong direction, not needed Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix cross-connect key exchange Since key exchange can be started both ways simultaneously, and these might not get finalised with UDP transport, we can't be sure what encryption key will be used by the other side: - the one derived in the key-exchange started by us, - the one derived in the key-exchange started by the other node. To alleviate this issue, we store two decryption keys in each session. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> --------- Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com>
2023-11-17 20:50:28 +01:00
trace "Decrypting failed, trying other key"
pt = decryptGCM(recipientKey1, nonce, ct, @iv & @header)
if pt.isNone():
# Don't consider this an error, the session got probably removed at the
# peer's side and a random message is send.
# This might also be a cross-connect. Not deleting key, as it might be
Fix: arrive to working keys in case of simultaneous cross connect (#84) * improve tracing of message exchange run e.g. as ``` nim c -r -d:debug -d:chronicles_enabled=on -d:chronicles_log_level=TRACE -d:chronicles_sinks=textlines[nocolors,stdout] tests/dht/test_providers.nim >err ``` Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * add debug on Handshake timeour Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * queue messages during handshake and send later If a handshake was already in progress, messages were dropped. Instead of this, it is better to queue these and send as soon as the handshake is finished and thus the encryption key is known. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * rename handshakeInProgress to keyexchangeInProgress Handshake is also a name of a message, which makes previous name less clear. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * keyexchangeInProgress: do not remove on handshake received This is the wrong direction, not needed Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> * fix cross-connect key exchange Since key exchange can be started both ways simultaneously, and these might not get finalised with UDP transport, we can't be sure what encryption key will be used by the other side: - the one derived in the key-exchange started by us, - the one derived in the key-exchange started by the other node. To alleviate this issue, we store two decryption keys in each session. Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com> --------- Signed-off-by: Csaba Kiraly <csaba.kiraly@gmail.com>
2023-11-17 20:50:28 +01:00
# needed later, depending on message order.
trace "Decrypting failed (invalid keys)", address = fromAddr
#c.sessions.del(srcId, fromAddr)
discovery_session_decrypt_failures.inc()
return ok(Packet(flag: Flag.OrdinaryMessage, requestNonce: nonce,
srcId: srcId))
# Most probably the same decryption key will work next time. We should
# elevate it's priority.
c.sessions.swapr(srcId, fromAddr)
let message = ? decodeMessage(pt.get())
return ok(Packet(flag: Flag.OrdinaryMessage,
messageOpt: some(message), requestNonce: nonce, srcId: srcId))
proc decodeWhoareyouPacket(c: var Codec, nonce: AESGCMNonce,
iv, header, ct: openArray[byte]): DecodeResult[Packet] =
# TODO improve this
let authdata = header[staticHeaderSize..header.high()]
# We now know the exact size that the authdata should be
if authdata.len != idNonceSize + sizeof(uint64):
return err("Invalid header length for whoareyou packet")
# The `message` part of WHOAREYOU packets is always empty.
if ct.len != 0:
return err("Invalid message length for whoareyou packet")
var idNonce: IdNonce
copyMem(addr idNonce[0], unsafeAddr authdata[0], idNonceSize)
let whoareyou = WhoareyouData(requestNonce: nonce, idNonce: idNonce,
recordSeq: uint64.fromBytesBE(
authdata.toOpenArray(idNonceSize, authdata.high)),
challengeData: @iv & @header)
return ok(Packet(flag: Flag.Whoareyou, whoareyou: whoareyou))
proc decodeHandshakePacket(c: var Codec, fromAddr: Address, nonce: AESGCMNonce,
iv, header, ct: openArray[byte]): DecodeResult[Packet] =
# Checking if there is enough data to decode authdata-head
if header.len <= staticHeaderSize + authdataHeadSize:
return err("Invalid header for handshake message packet: no authdata-head")
# Need to have at minimum the gcm tag size for the message.
# TODO: And actually, as we should be able to decrypt it, it should also be
# a valid message and thus we could increase here to the size of the smallest
# message possible.
if ct.len < gcmTagSize:
return err("Invalid message length for handshake message packet")
let
authdata = header[staticHeaderSize..header.high()]
srcId = NodeId.fromBytesBE(authdata.toOpenArray(0, 31))
sigSize = uint8(authdata[32])
ephKeySize = uint8(authdata[33])
# If smaller, as it can be equal and bigger (in case it holds an spr)
if header.len < staticHeaderSize + authdataHeadSize + int(sigSize) + int(ephKeySize):
return err("Invalid header for handshake message packet")
let key = HandshakeKey(nodeId: srcId, address: fromAddr)
var challenge: Challenge
if not c.handshakes.pop(key, challenge):
return err("No challenge found: timed out or unsolicited packet")
# This should be the compressed public key. But as we use the provided
# ephKeySize, it should also work with full sized key. However, the idNonce
# signature verification will fail.
let
ephKeyPos = authdataHeadSize + int(sigSize)
ephKeyRaw = authdata[ephKeyPos..<ephKeyPos + int(ephKeySize)]
ephKey = ? PublicKey.init(ephKeyRaw).mapErr(e =>
("Failed to deserialize PublicKey: " & $e).cstring)
var record: Option[SignedPeerRecord]
let recordPos = ephKeyPos + int(ephKeySize)
if authdata.len() > recordPos:
# There is possibly an SPR still
try:
# Signature check of record happens in decode.
let
prBytes = @(authdata.toOpenArray(recordPos, authdata.high))
decoded = ? SignedPeerRecord.decode(prBytes).mapErr(
(e: EnvelopeError) =>
("Invalid bytes for SignedPeerRecord: " & $e).cstring
)
record = some(decoded)
except ValueError:
return err("Invalid encoded SPR")
var pubkey: PublicKey
var newNode: Option[Node]
# TODO: Shall we return Node or SignedPeerRecord? SignedPeerRecord makes
# more sense, but we do need the pubkey and the nodeid
if record.isSome():
# Node returned might not have an address or not a valid address.
let node = ? newNode(record.get())
if node.id != srcId:
return err("Invalid node id: does not match node id of SPR")
# Note: Not checking if the record seqNum is higher than the one we might
# have stored as it comes from this node directly.
pubkey = node.pubkey
newNode = some(node)
else:
# TODO: Hmm, should we still verify node id of the SPR of this node?
if challenge.pubkey.isSome():
pubkey = challenge.pubkey.get()
else:
# We should have received a SignedPeerRecord in this case.
return err("Missing SPR in handshake packet")
# Verify the id-signature
let
sigBytes = @(authdata.toOpenArray(
authdataHeadSize,
authdataHeadSize + int(sigSize) - 1
))
sig = ? Signature.init(sigBytes).mapErr((e: CryptoError) =>
("Failed to deserialize signature from bytes: " & $e).cstring)
if not verifyIdSignature(sig, challenge.whoareyouData.challengeData,
ephKeyRaw, c.localNode.id, pubkey):
return err("Invalid id-signature")
# Do the key derivation step only after id-signature is verified as this is
# costly.
var secrets = ? deriveKeys(
srcId,
c.localNode.id,
c.privKey,
ephKey,
challenge.whoareyouData.challengeData)
swap(secrets.recipientKey, secrets.initiatorKey)
let pt = decryptGCM(secrets.recipientKey, nonce, ct, @iv & @header)
if pt.isNone():
c.sessions.del(srcId, fromAddr)
# Differently from an ordinary message, this is seen as an error as the
# secrets just got negotiated in the handshake and thus decryption should
# always work. We do not send a new Whoareyou on these as it probably means
# there is a compatiblity issue and we might loop forever in failed
# handshakes with this peer.
return err("Decryption of message failed in handshake packet")
let message = ? decodeMessage(pt.get())
# Only store the session secrets in case decryption was successful and also
# in case the message can get decoded.
c.sessions.store(srcId, fromAddr, secrets.recipientKey, secrets.initiatorKey)
return ok(Packet(flag: Flag.HandshakeMessage, message: message,
srcIdHs: srcId, node: newNode))
proc decodePacket*(c: var Codec, fromAddr: Address, input: openArray[byte]):
DecodeResult[Packet] =
## Decode a packet. This can be a regular packet or a packet in response to a
## WHOAREYOU packet. In case of the latter a `newNode` might be provided.
# Smallest packet is Whoareyou packet so that is the minimum size
if input.len() < whoareyouSize:
return err("Packet size too short")
# TODO: Just pass in the full input? Makes more sense perhaps.
let (staticHeader, header) = ? decodeHeader(c.localNode.id,
input.toOpenArray(0, ivSize - 1), # IV
# Don't know the size yet of the full header, so we pass all.
input.toOpenArray(ivSize, input.high))
case staticHeader.flag
of OrdinaryMessage:
return decodeMessagePacket(c, fromAddr, staticHeader.nonce,
input.toOpenArray(0, ivSize - 1), header,
input.toOpenArray(ivSize + header.len, input.high))
of Whoareyou:
return decodeWhoareyouPacket(c, staticHeader.nonce,
input.toOpenArray(0, ivSize - 1), header,
input.toOpenArray(ivSize + header.len, input.high))
of HandshakeMessage:
return decodeHandshakePacket(c, fromAddr, staticHeader.nonce,
input.toOpenArray(0, ivSize - 1), header,
input.toOpenArray(ivSize + header.len, input.high))