2007-07-04 08:24:30 +00:00

539 lines
14 KiB
C++

//
// task_io_service.hpp
// ~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2007 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_TASK_IO_SERVICE_HPP
#define ASIO_DETAIL_TASK_IO_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/push_options.hpp"
#include "asio/error_code.hpp"
#include "asio/io_service.hpp"
#include "asio/detail/call_stack.hpp"
#include "asio/detail/event.hpp"
#include "asio/detail/handler_alloc_helpers.hpp"
#include "asio/detail/handler_invoke_helpers.hpp"
#include "asio/detail/mutex.hpp"
#include "asio/detail/service_base.hpp"
#include "asio/detail/task_io_service_fwd.hpp"
namespace asio {
namespace detail {
template <typename Task>
class task_io_service
: public asio::detail::service_base<task_io_service<Task> >
{
public:
// Constructor.
task_io_service(asio::io_service& io_service)
: asio::detail::service_base<task_io_service<Task> >(io_service),
mutex_(),
task_(use_service<Task>(io_service)),
outstanding_work_(0),
handler_queue_(&task_handler_),
handler_queue_end_(&task_handler_),
stopped_(false),
shutdown_(false),
first_idle_thread_(0)
{
}
void init(size_t /*concurrency_hint*/)
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
asio::detail::mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
// Destroy handler objects.
while (handler_queue_)
{
handler_base* h = handler_queue_;
handler_queue_ = h->next_;
if (h != &task_handler_)
h->destroy();
}
// Reset handler queue to initial state.
handler_queue_ = &task_handler_;
handler_queue_end_ = &task_handler_;
}
// Run the event loop until interrupted or no more work.
size_t run(asio::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
idle_thread_info this_idle_thread;
this_idle_thread.prev = &this_idle_thread;
this_idle_thread.next = &this_idle_thread;
asio::detail::mutex::scoped_lock lock(mutex_);
size_t n = 0;
while (do_one(lock, &this_idle_thread, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Run until interrupted or one operation is performed.
size_t run_one(asio::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
idle_thread_info this_idle_thread;
this_idle_thread.prev = &this_idle_thread;
this_idle_thread.next = &this_idle_thread;
asio::detail::mutex::scoped_lock lock(mutex_);
return do_one(lock, &this_idle_thread, ec);
}
// Poll for operations without blocking.
size_t poll(asio::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
asio::detail::mutex::scoped_lock lock(mutex_);
size_t n = 0;
while (do_one(lock, 0, ec))
if (n != (std::numeric_limits<size_t>::max)())
++n;
return n;
}
// Poll for one operation without blocking.
size_t poll_one(asio::error_code& ec)
{
typename call_stack<task_io_service>::context ctx(this);
asio::detail::mutex::scoped_lock lock(mutex_);
return do_one(lock, 0, ec);
}
// Interrupt the event processing loop.
void stop()
{
asio::detail::mutex::scoped_lock lock(mutex_);
stop_all_threads();
}
// Reset in preparation for a subsequent run invocation.
void reset()
{
asio::detail::mutex::scoped_lock lock(mutex_);
stopped_ = false;
}
// Notify that some work has started.
void work_started()
{
asio::detail::mutex::scoped_lock lock(mutex_);
++outstanding_work_;
}
// Notify that some work has finished.
void work_finished()
{
asio::detail::mutex::scoped_lock lock(mutex_);
if (--outstanding_work_ == 0)
stop_all_threads();
}
// Request invocation of the given handler.
template <typename Handler>
void dispatch(Handler handler)
{
if (call_stack<task_io_service>::contains(this))
asio_handler_invoke_helpers::invoke(handler, &handler);
else
post(handler);
}
// Request invocation of the given handler and return immediately.
template <typename Handler>
void post(Handler handler)
{
// Allocate and construct an operation to wrap the handler.
typedef handler_wrapper<Handler> value_type;
typedef handler_alloc_traits<Handler, value_type> alloc_traits;
raw_handler_ptr<alloc_traits> raw_ptr(handler);
handler_ptr<alloc_traits> ptr(raw_ptr, handler);
asio::detail::mutex::scoped_lock lock(mutex_);
// If the service has been shut down we silently discard the handler.
if (shutdown_)
return;
// Add the handler to the end of the queue.
if (handler_queue_end_)
{
handler_queue_end_->next_ = ptr.get();
handler_queue_end_ = ptr.get();
}
else
{
handler_queue_ = handler_queue_end_ = ptr.get();
}
ptr.release();
// An undelivered handler is treated as unfinished work.
++outstanding_work_;
// Wake up a thread to execute the handler.
if (!interrupt_one_idle_thread())
if (task_handler_.next_ == 0 && handler_queue_end_ != &task_handler_)
task_.interrupt();
}
private:
struct idle_thread_info;
size_t do_one(asio::detail::mutex::scoped_lock& lock,
idle_thread_info* this_idle_thread, asio::error_code& ec)
{
if (outstanding_work_ == 0 && !stopped_)
{
stop_all_threads();
ec = asio::error_code();
return 0;
}
bool polling = !this_idle_thread;
bool task_has_run = false;
while (!stopped_)
{
if (handler_queue_)
{
// Prepare to execute first handler from queue.
handler_base* h = handler_queue_;
handler_queue_ = h->next_;
if (handler_queue_ == 0)
handler_queue_end_ = 0;
bool more_handlers = (handler_queue_ != 0);
lock.unlock();
if (h == &task_handler_)
{
// If the task has already run and we're polling then we're done.
if (task_has_run && polling)
{
ec = asio::error_code();
return 0;
}
task_has_run = true;
task_cleanup c(lock, *this);
// Run the task. May throw an exception. Only block if the handler
// queue is empty and we have an idle_thread_info object, otherwise
// we want to return as soon as possible.
task_.run(!more_handlers && !polling);
}
else
{
handler_cleanup c(lock, *this);
// Invoke the handler. May throw an exception.
h->call(); // call() deletes the handler object
ec = asio::error_code();
return 1;
}
}
else if (this_idle_thread)
{
// Nothing to run right now, so just wait for work to do.
if (first_idle_thread_)
{
this_idle_thread->next = first_idle_thread_;
this_idle_thread->prev = first_idle_thread_->prev;
first_idle_thread_->prev->next = this_idle_thread;
first_idle_thread_->prev = this_idle_thread;
}
first_idle_thread_ = this_idle_thread;
this_idle_thread->wakeup_event.clear();
lock.unlock();
this_idle_thread->wakeup_event.wait();
lock.lock();
if (this_idle_thread->next == this_idle_thread)
{
first_idle_thread_ = 0;
}
else
{
if (first_idle_thread_ == this_idle_thread)
first_idle_thread_ = this_idle_thread->next;
this_idle_thread->next->prev = this_idle_thread->prev;
this_idle_thread->prev->next = this_idle_thread->next;
this_idle_thread->next = this_idle_thread;
this_idle_thread->prev = this_idle_thread;
}
}
else
{
ec = asio::error_code();
return 0;
}
}
ec = asio::error_code();
return 0;
}
// Stop the task and all idle threads.
void stop_all_threads()
{
stopped_ = true;
interrupt_all_idle_threads();
if (task_handler_.next_ == 0 && handler_queue_end_ != &task_handler_)
task_.interrupt();
}
// Interrupt a single idle thread. Returns true if a thread was interrupted,
// false if no running thread could be found to interrupt.
bool interrupt_one_idle_thread()
{
if (first_idle_thread_)
{
first_idle_thread_->wakeup_event.signal();
first_idle_thread_ = first_idle_thread_->next;
return true;
}
return false;
}
// Interrupt all idle threads.
void interrupt_all_idle_threads()
{
if (first_idle_thread_)
{
first_idle_thread_->wakeup_event.signal();
idle_thread_info* current_idle_thread = first_idle_thread_->next;
while (current_idle_thread != first_idle_thread_)
{
current_idle_thread->wakeup_event.signal();
current_idle_thread = current_idle_thread->next;
}
}
}
class task_cleanup;
friend class task_cleanup;
// The base class for all handler wrappers. A function pointer is used
// instead of virtual functions to avoid the associated overhead.
class handler_base
{
public:
typedef void (*call_func_type)(handler_base*);
typedef void (*destroy_func_type)(handler_base*);
handler_base(call_func_type call_func, destroy_func_type destroy_func)
: next_(0),
call_func_(call_func),
destroy_func_(destroy_func)
{
}
void call()
{
call_func_(this);
}
void destroy()
{
destroy_func_(this);
}
protected:
// Prevent deletion through this type.
~handler_base()
{
}
private:
friend class task_io_service<Task>;
friend class task_cleanup;
handler_base* next_;
call_func_type call_func_;
destroy_func_type destroy_func_;
};
// Template wrapper for handlers.
template <typename Handler>
class handler_wrapper
: public handler_base
{
public:
handler_wrapper(Handler handler)
: handler_base(&handler_wrapper<Handler>::do_call,
&handler_wrapper<Handler>::do_destroy),
handler_(handler)
{
}
static void do_call(handler_base* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
// Make a copy of the handler so that the memory can be deallocated before
// the upcall is made.
Handler handler(h->handler_);
// Free the memory associated with the handler.
ptr.reset();
// Make the upcall.
asio_handler_invoke_helpers::invoke(handler, &handler);
}
static void do_destroy(handler_base* base)
{
// Take ownership of the handler object.
typedef handler_wrapper<Handler> this_type;
this_type* h(static_cast<this_type*>(base));
typedef handler_alloc_traits<Handler, this_type> alloc_traits;
handler_ptr<alloc_traits> ptr(h->handler_, h);
}
private:
Handler handler_;
};
// Helper class to perform task-related operations on block exit.
class task_cleanup
{
public:
task_cleanup(asio::detail::mutex::scoped_lock& lock,
task_io_service& task_io_svc)
: lock_(lock),
task_io_service_(task_io_svc)
{
}
~task_cleanup()
{
// Reinsert the task at the end of the handler queue.
lock_.lock();
task_io_service_.task_handler_.next_ = 0;
if (task_io_service_.handler_queue_end_)
{
task_io_service_.handler_queue_end_->next_
= &task_io_service_.task_handler_;
task_io_service_.handler_queue_end_
= &task_io_service_.task_handler_;
}
else
{
task_io_service_.handler_queue_
= task_io_service_.handler_queue_end_
= &task_io_service_.task_handler_;
}
}
private:
asio::detail::mutex::scoped_lock& lock_;
task_io_service& task_io_service_;
};
// Helper class to perform handler-related operations on block exit.
class handler_cleanup;
friend class handler_cleanup;
class handler_cleanup
{
public:
handler_cleanup(asio::detail::mutex::scoped_lock& lock,
task_io_service& task_io_svc)
: lock_(lock),
task_io_service_(task_io_svc)
{
}
~handler_cleanup()
{
lock_.lock();
if (--task_io_service_.outstanding_work_ == 0)
task_io_service_.stop_all_threads();
}
private:
asio::detail::mutex::scoped_lock& lock_;
task_io_service& task_io_service_;
};
// Mutex to protect access to internal data.
asio::detail::mutex mutex_;
// The task to be run by this service.
Task& task_;
// Handler object to represent the position of the task in the queue.
class task_handler
: public handler_base
{
public:
task_handler()
: handler_base(0, 0)
{
}
} task_handler_;
// The count of unfinished work.
int outstanding_work_;
// The start of a linked list of handlers that are ready to be delivered.
handler_base* handler_queue_;
// The end of a linked list of handlers that are ready to be delivered.
handler_base* handler_queue_end_;
// Flag to indicate that the dispatcher has been stopped.
bool stopped_;
// Flag to indicate that the dispatcher has been shut down.
bool shutdown_;
// Structure containing information about an idle thread.
struct idle_thread_info
{
event wakeup_event;
idle_thread_info* prev;
idle_thread_info* next;
};
// The number of threads that are currently idle.
idle_thread_info* first_idle_thread_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_TASK_IO_SERVICE_HPP