deluge/include/libtorrent/asio/detail/reactive_socket_service.hpp

1641 lines
49 KiB
C++

//
// reactive_socket_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2006 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#define ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/push_options.hpp"
#include "asio/detail/push_options.hpp"
#include <boost/shared_ptr.hpp>
#include "asio/detail/pop_options.hpp"
#include "asio/buffer.hpp"
#include "asio/error.hpp"
#include "asio/error_handler.hpp"
#include "asio/io_service.hpp"
#include "asio/socket_base.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/socket_holder.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"
namespace asio {
namespace detail {
template <typename Protocol, typename Reactor>
class reactive_socket_service
: public asio::io_service::service
{
public:
// The protocol type.
typedef Protocol protocol_type;
// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
// The native type of a socket.
typedef socket_type native_type;
// The implementation type of the socket.
class implementation_type
: private asio::detail::noncopyable
{
public:
// Default constructor.
implementation_type()
: socket_(invalid_socket),
flags_(0),
protocol_(endpoint_type().protocol())
{
}
private:
// Only this service will have access to the internal values.
friend class reactive_socket_service<Protocol, Reactor>;
// The native socket representation.
socket_type socket_;
enum
{
user_set_non_blocking = 1, // The user wants a non-blocking socket.
internal_non_blocking = 2, // The socket has been set non-blocking.
enable_connection_aborted = 4, // User wants connection_aborted errors.
user_set_linger = 8 // The user set the linger option.
};
// Flags indicating the current state of the socket.
unsigned char flags_;
// The protocol associated with the socket.
protocol_type protocol_;
};
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 16 };
// Constructor.
reactive_socket_service(asio::io_service& io_service)
: asio::io_service::service(io_service),
reactor_(asio::use_service<Reactor>(io_service))
{
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
// Construct a new socket implementation.
void construct(implementation_type& impl)
{
impl.socket_ = invalid_socket;
impl.flags_ = 0;
}
// Destroy a socket implementation.
void destroy(implementation_type& impl)
{
if (impl.socket_ != invalid_socket)
{
reactor_.close_descriptor(impl.socket_);
if (impl.flags_ & implementation_type::internal_non_blocking)
{
ioctl_arg_type non_blocking = 0;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking);
impl.flags_ &= ~implementation_type::internal_non_blocking;
}
if (impl.flags_ & implementation_type::user_set_linger)
{
::linger opt;
opt.l_onoff = 0;
opt.l_linger = 0;
socket_ops::setsockopt(impl.socket_,
SOL_SOCKET, SO_LINGER, &opt, sizeof(opt));
}
socket_ops::close(impl.socket_);
impl.socket_ = invalid_socket;
}
}
// Open a new socket implementation.
template <typename Error_Handler>
void open(implementation_type& impl, const protocol_type& protocol,
Error_Handler error_handler)
{
close(impl, asio::ignore_error());
socket_holder sock(socket_ops::socket(protocol.family(),
protocol.type(), protocol.protocol()));
if (sock.get() == invalid_socket)
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
if (int err = reactor_.register_descriptor(sock.get()))
{
error_handler(asio::error(err));
return;
}
impl.socket_ = sock.release();
impl.flags_ = 0;
impl.protocol_ = protocol;
error_handler(asio::error(0));
}
// Assign a native socket to a socket implementation.
template <typename Error_Handler>
void assign(implementation_type& impl, const protocol_type& protocol,
const native_type& native_socket, Error_Handler error_handler)
{
close(impl, asio::ignore_error());
if (int err = reactor_.register_descriptor(native_socket))
{
error_handler(asio::error(err));
return;
}
impl.socket_ = native_socket;
impl.flags_ = 0;
impl.protocol_ = protocol;
error_handler(asio::error(0));
}
// Destroy a socket implementation.
template <typename Error_Handler>
void close(implementation_type& impl, Error_Handler error_handler)
{
if (impl.socket_ != invalid_socket)
{
reactor_.close_descriptor(impl.socket_);
if (impl.flags_ & implementation_type::internal_non_blocking)
{
ioctl_arg_type non_blocking = 0;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking);
impl.flags_ &= ~implementation_type::internal_non_blocking;
}
if (socket_ops::close(impl.socket_) == socket_error_retval)
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
impl.socket_ = invalid_socket;
}
error_handler(asio::error(0));
}
// Get the native socket representation.
native_type native(implementation_type& impl)
{
return impl.socket_;
}
// Cancel all operations associated with the socket.
template <typename Error_Handler>
void cancel(implementation_type& impl, Error_Handler error_handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
error_handler(error);
}
else
{
reactor_.cancel_ops(impl.socket_);
error_handler(asio::error(0));
}
}
// Bind the socket to the specified local endpoint.
template <typename Error_Handler>
void bind(implementation_type& impl, const endpoint_type& endpoint,
Error_Handler error_handler)
{
if (socket_ops::bind(impl.socket_, endpoint.data(),
endpoint.size()) == socket_error_retval)
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
// Place the socket into the state where it will listen for new connections.
template <typename Error_Handler>
void listen(implementation_type& impl, int backlog,
Error_Handler error_handler)
{
if (socket_ops::listen(impl.socket_, backlog) == socket_error_retval)
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
// Set a socket option.
template <typename Option, typename Error_Handler>
void set_option(implementation_type& impl, const Option& option,
Error_Handler error_handler)
{
if (option.level(impl.protocol_) == custom_socket_option_level
&& option.name(impl.protocol_) == enable_connection_aborted_option)
{
if (option.size(impl.protocol_) != sizeof(int))
{
error_handler(asio::error(asio::error::invalid_argument));
}
else
{
if (*reinterpret_cast<const int*>(option.data(impl.protocol_)))
impl.flags_ |= implementation_type::enable_connection_aborted;
else
impl.flags_ &= ~implementation_type::enable_connection_aborted;
error_handler(asio::error(0));
}
}
else
{
if (option.level(impl.protocol_) == SOL_SOCKET
&& option.name(impl.protocol_) == SO_LINGER)
{
impl.flags_ |= implementation_type::user_set_linger;
}
if (socket_ops::setsockopt(impl.socket_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), option.size(impl.protocol_)))
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
}
// Set a socket option.
template <typename Option, typename Error_Handler>
void get_option(const implementation_type& impl, Option& option,
Error_Handler error_handler) const
{
if (option.level(impl.protocol_) == custom_socket_option_level
&& option.name(impl.protocol_) == enable_connection_aborted_option)
{
if (option.size(impl.protocol_) != sizeof(int))
{
error_handler(asio::error(asio::error::invalid_argument));
}
else
{
int* target = reinterpret_cast<int*>(option.data(impl.protocol_));
if (impl.flags_ & implementation_type::enable_connection_aborted)
*target = 1;
else
*target = 0;
error_handler(asio::error(0));
}
}
else
{
size_t size = option.size(impl.protocol_);
if (socket_ops::getsockopt(impl.socket_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), &size))
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
}
// Perform an IO control command on the socket.
template <typename IO_Control_Command, typename Error_Handler>
void io_control(implementation_type& impl, IO_Control_Command& command,
Error_Handler error_handler)
{
if (command.name() == static_cast<int>(FIONBIO))
{
if (command.get())
impl.flags_ |= implementation_type::user_set_non_blocking;
else
impl.flags_ &= ~implementation_type::user_set_non_blocking;
error_handler(asio::error(0));
}
else
{
if (socket_ops::ioctl(impl.socket_, command.name(),
static_cast<ioctl_arg_type*>(command.data())))
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
}
// Get the local endpoint.
template <typename Error_Handler>
void get_local_endpoint(const implementation_type& impl,
endpoint_type& endpoint, Error_Handler error_handler) const
{
socket_addr_len_type addr_len = endpoint.capacity();
if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len))
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
endpoint.resize(addr_len);
error_handler(asio::error(0));
}
// Get the remote endpoint.
template <typename Error_Handler>
void get_remote_endpoint(const implementation_type& impl,
endpoint_type& endpoint, Error_Handler error_handler) const
{
socket_addr_len_type addr_len = endpoint.capacity();
if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len))
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
endpoint.resize(addr_len);
error_handler(asio::error(0));
}
/// Disable sends or receives on the socket.
template <typename Error_Handler>
void shutdown(implementation_type& impl, socket_base::shutdown_type what,
Error_Handler error_handler)
{
if (socket_ops::shutdown(impl.socket_, what) != 0)
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
// Send the given data to the peer.
template <typename Const_Buffers, typename Error_Handler>
size_t send(implementation_type& impl, const Const_Buffers& buffers,
socket_base::message_flags flags, Error_Handler error_handler)
{
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Const_Buffers::const_iterator iter = buffers.begin();
typename Const_Buffers::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
error_handler(asio::error(0));
return 0;
}
// Send the data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_sent = socket_ops::send(impl.socket_, bufs, i, flags);
int error = socket_ops::get_error();
// Check if operation succeeded.
if (bytes_sent >= 0)
{
error_handler(asio::error(0));
return bytes_sent;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (error != asio::error::would_block
&& error != asio::error::try_again))
{
error_handler(asio::error(error));
return 0;
}
// Wait for socket to become ready.
if (socket_ops::poll_write(impl.socket_) < 0)
{
error_handler(asio::error(socket_ops::get_error()));
return 0;
}
}
}
template <typename Const_Buffers, typename Handler>
class send_handler
{
public:
send_handler(socket_type socket, asio::io_service& io_service,
const Const_Buffers& buffers, socket_base::message_flags flags,
Handler handler)
: socket_(socket),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
flags_(flags),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error, 0));
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Const_Buffers::const_iterator iter = buffers_.begin();
typename Const_Buffers::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
}
// Send the data.
int bytes = socket_ops::send(socket_, bufs, i, flags_);
asio::error error(bytes < 0
? socket_ops::get_error() : asio::error::success);
// Check if we need to run the operation again.
if (error == asio::error::would_block
|| error == asio::error::try_again)
return false;
io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes));
return true;
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Const_Buffers buffers_;
socket_base::message_flags flags_;
Handler handler_;
};
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename Const_Buffers, typename Handler>
void async_send(implementation_type& impl, const Const_Buffers& buffers,
socket_base::message_flags flags, Handler handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
io_service().post(bind_handler(handler, error, 0));
}
else
{
if (impl.protocol_.type() == SOCK_STREAM)
{
// Determine total size of buffers.
typename Const_Buffers::const_iterator iter = buffers.begin();
typename Const_Buffers::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (total_buffer_size == 0)
{
asio::error error(asio::error::success);
io_service().post(bind_handler(handler, error, 0));
return;
}
}
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error, 0));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_write_op(impl.socket_,
send_handler<Const_Buffers, Handler>(
impl.socket_, io_service(), buffers, flags, handler));
}
}
// Send a datagram to the specified endpoint. Returns the number of bytes
// sent.
template <typename Const_Buffers, typename Error_Handler>
size_t send_to(implementation_type& impl, const Const_Buffers& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
Error_Handler error_handler)
{
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Const_Buffers::const_iterator iter = buffers.begin();
typename Const_Buffers::const_iterator end = buffers.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
}
// Send the data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_sent = socket_ops::sendto(impl.socket_, bufs, i, flags,
destination.data(), destination.size());
int error = socket_ops::get_error();
// Check if operation succeeded.
if (bytes_sent >= 0)
{
error_handler(asio::error(0));
return bytes_sent;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (error != asio::error::would_block
&& error != asio::error::try_again))
{
error_handler(asio::error(error));
return 0;
}
// Wait for socket to become ready.
if (socket_ops::poll_write(impl.socket_) < 0)
{
error_handler(asio::error(socket_ops::get_error()));
return 0;
}
}
}
template <typename Const_Buffers, typename Handler>
class send_to_handler
{
public:
send_to_handler(socket_type socket, asio::io_service& io_service,
const Const_Buffers& buffers, const endpoint_type& endpoint,
socket_base::message_flags flags, Handler handler)
: socket_(socket),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
destination_(endpoint),
flags_(flags),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error, 0));
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Const_Buffers::const_iterator iter = buffers_.begin();
typename Const_Buffers::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
}
// Send the data.
int bytes = socket_ops::sendto(socket_, bufs, i, flags_,
destination_.data(), destination_.size());
asio::error error(bytes < 0
? socket_ops::get_error() : asio::error::success);
// Check if we need to run the operation again.
if (error == asio::error::would_block
|| error == asio::error::try_again)
return false;
io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes));
return true;
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Const_Buffers buffers_;
endpoint_type destination_;
socket_base::message_flags flags_;
Handler handler_;
};
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename Const_Buffers, typename Handler>
void async_send_to(implementation_type& impl, const Const_Buffers& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
Handler handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
io_service().post(bind_handler(handler, error, 0));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error, 0));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_write_op(impl.socket_,
send_to_handler<Const_Buffers, Handler>(
impl.socket_, io_service(), buffers, destination, flags, handler));
}
}
// Receive some data from the peer. Returns the number of bytes received.
template <typename Mutable_Buffers, typename Error_Handler>
size_t receive(implementation_type& impl, const Mutable_Buffers& buffers,
socket_base::message_flags flags, Error_Handler error_handler)
{
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Mutable_Buffers::const_iterator iter = buffers.begin();
typename Mutable_Buffers::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
error_handler(asio::error(0));
return 0;
}
// Receive some data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_recvd = socket_ops::recv(impl.socket_, bufs, i, flags);
int error = socket_ops::get_error();
// Check if operation succeeded.
if (bytes_recvd > 0)
{
error_handler(asio::error(0));
return bytes_recvd;
}
// Check for EOF.
if (bytes_recvd == 0)
{
error_handler(asio::error(asio::error::eof));
return 0;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (error != asio::error::would_block
&& error != asio::error::try_again))
{
error_handler(asio::error(error));
return 0;
}
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_) < 0)
{
error_handler(asio::error(socket_ops::get_error()));
return 0;
}
}
}
template <typename Mutable_Buffers, typename Handler>
class receive_handler
{
public:
receive_handler(socket_type socket, asio::io_service& io_service,
const Mutable_Buffers& buffers, socket_base::message_flags flags,
Handler handler)
: socket_(socket),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
flags_(flags),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error, 0));
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Mutable_Buffers::const_iterator iter = buffers_.begin();
typename Mutable_Buffers::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
}
// Receive some data.
int bytes = socket_ops::recv(socket_, bufs, i, flags_);
int error_code = asio::error::success;
if (bytes < 0)
error_code = socket_ops::get_error();
else if (bytes == 0)
error_code = asio::error::eof;
asio::error error(error_code);
// Check if we need to run the operation again.
if (error == asio::error::would_block
|| error == asio::error::try_again)
return false;
io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes));
return true;
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Mutable_Buffers buffers_;
socket_base::message_flags flags_;
Handler handler_;
};
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename Mutable_Buffers, typename Handler>
void async_receive(implementation_type& impl, const Mutable_Buffers& buffers,
socket_base::message_flags flags, Handler handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
io_service().post(bind_handler(handler, error, 0));
}
else
{
if (impl.protocol_.type() == SOCK_STREAM)
{
// Determine total size of buffers.
typename Mutable_Buffers::const_iterator iter = buffers.begin();
typename Mutable_Buffers::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (total_buffer_size == 0)
{
asio::error error(asio::error::success);
io_service().post(bind_handler(handler, error, 0));
return;
}
}
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error, 0));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
if (flags & socket_base::message_out_of_band)
{
reactor_.start_except_op(impl.socket_,
receive_handler<Mutable_Buffers, Handler>(
impl.socket_, io_service(), buffers, flags, handler));
}
else
{
reactor_.start_read_op(impl.socket_,
receive_handler<Mutable_Buffers, Handler>(
impl.socket_, io_service(), buffers, flags, handler));
}
}
}
// Receive a datagram with the endpoint of the sender. Returns the number of
// bytes received.
template <typename Mutable_Buffers, typename Error_Handler>
size_t receive_from(implementation_type& impl, const Mutable_Buffers& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
Error_Handler error_handler)
{
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Mutable_Buffers::const_iterator iter = buffers.begin();
typename Mutable_Buffers::const_iterator end = buffers.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
}
// Receive some data.
for (;;)
{
// Try to complete the operation without blocking.
socket_addr_len_type addr_len = sender_endpoint.capacity();
int bytes_recvd = socket_ops::recvfrom(impl.socket_, bufs, i, flags,
sender_endpoint.data(), &addr_len);
int error = socket_ops::get_error();
// Check if operation succeeded.
if (bytes_recvd > 0)
{
sender_endpoint.resize(addr_len);
error_handler(asio::error(0));
return bytes_recvd;
}
// Check for EOF.
if (bytes_recvd == 0)
{
error_handler(asio::error(asio::error::eof));
return 0;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (error != asio::error::would_block
&& error != asio::error::try_again))
{
error_handler(asio::error(error));
return 0;
}
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_) < 0)
{
error_handler(asio::error(socket_ops::get_error()));
return 0;
}
}
}
template <typename Mutable_Buffers, typename Handler>
class receive_from_handler
{
public:
receive_from_handler(socket_type socket,
asio::io_service& io_service, const Mutable_Buffers& buffers,
endpoint_type& endpoint, socket_base::message_flags flags,
Handler handler)
: socket_(socket),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
sender_endpoint_(endpoint),
flags_(flags),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error, 0));
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename Mutable_Buffers::const_iterator iter = buffers_.begin();
typename Mutable_Buffers::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
}
// Receive some data.
socket_addr_len_type addr_len = sender_endpoint_.capacity();
int bytes = socket_ops::recvfrom(socket_, bufs, i, flags_,
sender_endpoint_.data(), &addr_len);
int error_code = asio::error::success;
if (bytes < 0)
error_code = socket_ops::get_error();
else if (bytes == 0)
error_code = asio::error::eof;
asio::error error(error_code);
// Check if we need to run the operation again.
if (error == asio::error::would_block
|| error == asio::error::try_again)
return false;
sender_endpoint_.resize(addr_len);
io_service_.post(bind_handler(handler_, error, bytes < 0 ? 0 : bytes));
return true;
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Mutable_Buffers buffers_;
endpoint_type& sender_endpoint_;
socket_base::message_flags flags_;
Handler handler_;
};
// Start an asynchronous receive. The buffer for the data being received and
// the sender_endpoint object must both be valid for the lifetime of the
// asynchronous operation.
template <typename Mutable_Buffers, typename Handler>
void async_receive_from(implementation_type& impl,
const Mutable_Buffers& buffers, endpoint_type& sender_endpoint,
socket_base::message_flags flags, Handler handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
io_service().post(bind_handler(handler, error, 0));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error, 0));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_read_op(impl.socket_,
receive_from_handler<Mutable_Buffers, Handler>(
impl.socket_, io_service(), buffers,
sender_endpoint, flags, handler));
}
}
// Accept a new connection.
template <typename Socket, typename Error_Handler>
void accept(implementation_type& impl, Socket& peer,
Error_Handler error_handler)
{
// We cannot accept a socket that is already open.
if (peer.native() != invalid_socket)
{
error_handler(asio::error(asio::error::already_connected));
return;
}
// Accept a socket.
for (;;)
{
// Try to complete the operation without blocking.
socket_holder new_socket(socket_ops::accept(impl.socket_, 0, 0));
int error = socket_ops::get_error();
// Check if operation succeeded.
if (new_socket.get() >= 0)
{
asio::error temp_error;
peer.assign(impl.protocol_, new_socket.get(),
asio::assign_error(temp_error));
if (temp_error)
{
error_handler(temp_error);
}
else
{
new_socket.release();
error_handler(asio::error(0));
}
return;
}
// Operation failed.
if (error == asio::error::would_block
|| error == asio::error::try_again)
{
if (impl.flags_ & implementation_type::user_set_non_blocking)
{
error_handler(asio::error(error));
return;
}
// Fall through to retry operation.
}
else if (error == asio::error::connection_aborted)
{
if (impl.flags_ & implementation_type::enable_connection_aborted)
{
error_handler(asio::error(error));
return;
}
// Fall through to retry operation.
}
else
{
error_handler(asio::error(error));
return;
}
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_) < 0)
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
}
}
// Accept a new connection.
template <typename Socket, typename Error_Handler>
void accept_endpoint(implementation_type& impl, Socket& peer,
endpoint_type& peer_endpoint, Error_Handler error_handler)
{
// We cannot accept a socket that is already open.
if (peer.native() != invalid_socket)
{
error_handler(asio::error(asio::error::already_connected));
return;
}
// Accept a socket.
for (;;)
{
// Try to complete the operation without blocking.
socket_addr_len_type addr_len = peer_endpoint.capacity();
socket_holder new_socket(socket_ops::accept(
impl.socket_, peer_endpoint.data(), &addr_len));
int error = socket_ops::get_error();
// Check if operation succeeded.
if (new_socket.get() >= 0)
{
peer_endpoint.resize(addr_len);
asio::error temp_error;
peer.assign(impl.protocol_, new_socket.get(),
asio::assign_error(temp_error));
if (temp_error)
{
error_handler(temp_error);
}
else
{
new_socket.release();
error_handler(asio::error(0));
}
return;
}
// Operation failed.
if (error == asio::error::would_block
|| error == asio::error::try_again)
{
if (impl.flags_ & implementation_type::user_set_non_blocking)
{
error_handler(asio::error(error));
return;
}
// Fall through to retry operation.
}
else if (error == asio::error::connection_aborted)
{
if (impl.flags_ & implementation_type::enable_connection_aborted)
{
error_handler(asio::error(error));
return;
}
// Fall through to retry operation.
}
else
{
error_handler(asio::error(error));
return;
}
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_) < 0)
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
}
}
template <typename Socket, typename Handler>
class accept_handler
{
public:
accept_handler(socket_type socket, asio::io_service& io_service,
Socket& peer, const protocol_type& protocol,
bool enable_connection_aborted, Handler handler)
: socket_(socket),
io_service_(io_service),
work_(io_service),
peer_(peer),
protocol_(protocol),
enable_connection_aborted_(enable_connection_aborted),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error));
return true;
}
// Accept the waiting connection.
socket_holder new_socket(socket_ops::accept(socket_, 0, 0));
asio::error error(new_socket.get() == invalid_socket
? socket_ops::get_error() : asio::error::success);
// Check if we need to run the operation again.
if (error == asio::error::would_block
|| error == asio::error::try_again)
return false;
if (error == asio::error::connection_aborted
&& !enable_connection_aborted_)
return false;
// Transfer ownership of the new socket to the peer object.
if (!error)
{
peer_.assign(protocol_, new_socket.get(),
asio::assign_error(error));
if (!error)
new_socket.release();
}
io_service_.post(bind_handler(handler_, error));
return true;
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Socket& peer_;
protocol_type protocol_;
bool enable_connection_aborted_;
Handler handler_;
};
// Start an asynchronous accept. The peer object must be valid until the
// accept's handler is invoked.
template <typename Socket, typename Handler>
void async_accept(implementation_type& impl, Socket& peer, Handler handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
io_service().post(bind_handler(handler, error));
}
else if (peer.native() != invalid_socket)
{
asio::error error(asio::error::already_connected);
io_service().post(bind_handler(handler, error));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_read_op(impl.socket_,
accept_handler<Socket, Handler>(
impl.socket_, io_service(), peer, impl.protocol_,
(impl.flags_ & implementation_type::enable_connection_aborted) != 0,
handler));
}
}
template <typename Socket, typename Handler>
class accept_endp_handler
{
public:
accept_endp_handler(socket_type socket, asio::io_service& io_service,
Socket& peer, endpoint_type& peer_endpoint,
bool enable_connection_aborted, Handler handler)
: socket_(socket),
io_service_(io_service),
work_(io_service),
peer_(peer),
peer_endpoint_(peer_endpoint),
enable_connection_aborted_(enable_connection_aborted),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error));
return true;
}
// Accept the waiting connection.
socket_addr_len_type addr_len = peer_endpoint_.capacity();
socket_holder new_socket(socket_ops::accept(
socket_, peer_endpoint_.data(), &addr_len));
asio::error error(new_socket.get() == invalid_socket
? socket_ops::get_error() : asio::error::success);
// Check if we need to run the operation again.
if (error == asio::error::would_block
|| error == asio::error::try_again)
return false;
if (error == asio::error::connection_aborted
&& !enable_connection_aborted_)
return false;
// Transfer ownership of the new socket to the peer object.
if (!error)
{
peer_endpoint_.resize(addr_len);
peer_.assign(peer_endpoint_.protocol(), new_socket.get(),
asio::assign_error(error));
if (!error)
new_socket.release();
}
io_service_.post(bind_handler(handler_, error));
return true;
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Socket& peer_;
endpoint_type& peer_endpoint_;
bool enable_connection_aborted_;
Handler handler_;
};
// Start an asynchronous accept. The peer and peer_endpoint objects
// must be valid until the accept's handler is invoked.
template <typename Socket, typename Handler>
void async_accept_endpoint(implementation_type& impl, Socket& peer,
endpoint_type& peer_endpoint, Handler handler)
{
if (impl.socket_ == invalid_socket)
{
asio::error error(asio::error::bad_descriptor);
io_service().post(bind_handler(handler, error));
}
else if (peer.native() != invalid_socket)
{
asio::error error(asio::error::already_connected);
io_service().post(bind_handler(handler, error));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_read_op(impl.socket_,
accept_endp_handler<Socket, Handler>(
impl.socket_, io_service(), peer, peer_endpoint,
(impl.flags_ & implementation_type::enable_connection_aborted) != 0,
handler));
}
}
// Connect the socket to the specified endpoint.
template <typename Error_Handler>
void connect(implementation_type& impl, const endpoint_type& peer_endpoint,
Error_Handler error_handler)
{
// Open the socket if it is not already open.
if (impl.socket_ == invalid_socket)
{
// Get the flags used to create the new socket.
int family = peer_endpoint.protocol().family();
int type = peer_endpoint.protocol().type();
int proto = peer_endpoint.protocol().protocol();
// Create a new socket.
impl.socket_ = socket_ops::socket(family, type, proto);
if (impl.socket_ == invalid_socket)
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
// Register the socket with the reactor.
if (int err = reactor_.register_descriptor(impl.socket_))
{
socket_ops::close(impl.socket_);
error_handler(asio::error(err));
return;
}
}
else if (impl.flags_ & implementation_type::internal_non_blocking)
{
// Mark the socket as blocking while we perform the connect.
ioctl_arg_type non_blocking = 0;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
error_handler(asio::error(socket_ops::get_error()));
return;
}
impl.flags_ &= ~implementation_type::internal_non_blocking;
}
// Perform the connect operation.
int result = socket_ops::connect(impl.socket_,
peer_endpoint.data(), peer_endpoint.size());
if (result == socket_error_retval)
error_handler(asio::error(socket_ops::get_error()));
else
error_handler(asio::error(0));
}
template <typename Handler>
class connect_handler
{
public:
connect_handler(socket_type socket, boost::shared_ptr<bool> completed,
asio::io_service& io_service, Reactor& reactor, Handler handler)
: socket_(socket),
completed_(completed),
io_service_(io_service),
work_(io_service),
reactor_(reactor),
handler_(handler)
{
}
bool operator()(int result)
{
// Check whether a handler has already been called for the connection.
// If it has, then we don't want to do anything in this handler.
if (*completed_)
return true;
// Cancel the other reactor operation for the connection.
*completed_ = true;
reactor_.enqueue_cancel_ops_unlocked(socket_);
// Check whether the operation was successful.
if (result != 0)
{
asio::error error(result);
io_service_.post(bind_handler(handler_, error));
return true;
}
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (socket_ops::getsockopt(socket_, SOL_SOCKET, SO_ERROR,
&connect_error, &connect_error_len) == socket_error_retval)
{
asio::error error(socket_ops::get_error());
io_service_.post(bind_handler(handler_, error));
return true;
}
// If connection failed then post the handler with the error code.
if (connect_error)
{
asio::error error(connect_error);
io_service_.post(bind_handler(handler_, error));
return true;
}
// Post the result of the successful connection operation.
asio::error error(asio::error::success);
io_service_.post(bind_handler(handler_, error));
return true;
}
private:
socket_type socket_;
boost::shared_ptr<bool> completed_;
asio::io_service& io_service_;
asio::io_service::work work_;
Reactor& reactor_;
Handler handler_;
};
// Start an asynchronous connect.
template <typename Handler>
void async_connect(implementation_type& impl,
const endpoint_type& peer_endpoint, Handler handler)
{
// Open the socket if it is not already open.
if (impl.socket_ == invalid_socket)
{
// Get the flags used to create the new socket.
int family = peer_endpoint.protocol().family();
int type = peer_endpoint.protocol().type();
int proto = peer_endpoint.protocol().protocol();
// Create a new socket.
impl.socket_ = socket_ops::socket(family, type, proto);
if (impl.socket_ == invalid_socket)
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error));
return;
}
// Register the socket with the reactor.
if (int err = reactor_.register_descriptor(impl.socket_))
{
socket_ops::close(impl.socket_);
asio::error error(err);
io_service().post(bind_handler(handler, error));
return;
}
}
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
ioctl_arg_type non_blocking = 1;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking))
{
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error));
return;
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
// Start the connect operation. The socket is already marked as non-blocking
// so the connection will take place asynchronously.
if (socket_ops::connect(impl.socket_, peer_endpoint.data(),
peer_endpoint.size()) == 0)
{
// The connect operation has finished successfully so we need to post the
// handler immediately.
asio::error error(asio::error::success);
io_service().post(bind_handler(handler, error));
}
else if (socket_ops::get_error() == asio::error::in_progress
|| socket_ops::get_error() == asio::error::would_block)
{
// The connection is happening in the background, and we need to wait
// until the socket becomes writeable.
boost::shared_ptr<bool> completed(new bool(false));
reactor_.start_write_and_except_ops(impl.socket_,
connect_handler<Handler>(
impl.socket_, completed, io_service(), reactor_, handler));
}
else
{
// The connect operation has failed, so post the handler immediately.
asio::error error(socket_ops::get_error());
io_service().post(bind_handler(handler, error));
}
}
private:
// The selector that performs event demultiplexing for the provider.
Reactor& reactor_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP