deluge/libtorrent/include/asio/detail/reactive_socket_service.hpp

1787 lines
52 KiB
C++

//
// reactive_socket_service.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2008 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#define ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include "asio/detail/push_options.hpp"
#include "asio/detail/push_options.hpp"
#include <boost/shared_ptr.hpp>
#include "asio/detail/pop_options.hpp"
#include "asio/buffer.hpp"
#include "asio/error.hpp"
#include "asio/io_service.hpp"
#include "asio/socket_base.hpp"
#include "asio/detail/bind_handler.hpp"
#include "asio/detail/handler_base_from_member.hpp"
#include "asio/detail/noncopyable.hpp"
#include "asio/detail/service_base.hpp"
#include "asio/detail/socket_holder.hpp"
#include "asio/detail/socket_ops.hpp"
#include "asio/detail/socket_types.hpp"
namespace asio {
namespace detail {
template <typename Protocol, typename Reactor>
class reactive_socket_service
: public asio::detail::service_base<
reactive_socket_service<Protocol, Reactor> >
{
public:
// The protocol type.
typedef Protocol protocol_type;
// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
// The native type of a socket.
typedef socket_type native_type;
// The implementation type of the socket.
class implementation_type
: private asio::detail::noncopyable
{
public:
// Default constructor.
implementation_type()
: socket_(invalid_socket),
flags_(0),
protocol_(endpoint_type().protocol())
{
}
private:
// Only this service will have access to the internal values.
friend class reactive_socket_service<Protocol, Reactor>;
// The native socket representation.
socket_type socket_;
enum
{
// The user wants a non-blocking socket.
user_set_non_blocking = 1,
// The implementation wants a non-blocking socket (in order to be able to
// perform asynchronous read and write operations).
internal_non_blocking = 2,
// Helper "flag" used to determine whether the socket is non-blocking.
non_blocking = user_set_non_blocking | internal_non_blocking,
// User wants connection_aborted errors, which are disabled by default.
enable_connection_aborted = 4,
// The user set the linger option. Needs to be checked when closing.
user_set_linger = 8
};
// Flags indicating the current state of the socket.
unsigned char flags_;
// The protocol associated with the socket.
protocol_type protocol_;
// Per-descriptor data used by the reactor.
typename Reactor::per_descriptor_data reactor_data_;
};
// The maximum number of buffers to support in a single operation.
enum { max_buffers = 64 < max_iov_len ? 64 : max_iov_len };
// Constructor.
reactive_socket_service(asio::io_service& io_service)
: asio::detail::service_base<
reactive_socket_service<Protocol, Reactor> >(io_service),
reactor_(asio::use_service<Reactor>(io_service))
{
reactor_.init_task();
}
// Destroy all user-defined handler objects owned by the service.
void shutdown_service()
{
}
// Construct a new socket implementation.
void construct(implementation_type& impl)
{
impl.socket_ = invalid_socket;
impl.flags_ = 0;
}
// Destroy a socket implementation.
void destroy(implementation_type& impl)
{
if (impl.socket_ != invalid_socket)
{
reactor_.close_descriptor(impl.socket_, impl.reactor_data_);
if (impl.flags_ & implementation_type::non_blocking)
{
ioctl_arg_type non_blocking = 0;
asio::error_code ignored_ec;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ignored_ec);
impl.flags_ &= ~implementation_type::non_blocking;
}
if (impl.flags_ & implementation_type::user_set_linger)
{
::linger opt;
opt.l_onoff = 0;
opt.l_linger = 0;
asio::error_code ignored_ec;
socket_ops::setsockopt(impl.socket_,
SOL_SOCKET, SO_LINGER, &opt, sizeof(opt), ignored_ec);
}
asio::error_code ignored_ec;
socket_ops::close(impl.socket_, ignored_ec);
impl.socket_ = invalid_socket;
}
}
// Open a new socket implementation.
asio::error_code open(implementation_type& impl,
const protocol_type& protocol, asio::error_code& ec)
{
if (is_open(impl))
{
ec = asio::error::already_open;
return ec;
}
socket_holder sock(socket_ops::socket(protocol.family(),
protocol.type(), protocol.protocol(), ec));
if (sock.get() == invalid_socket)
return ec;
if (int err = reactor_.register_descriptor(sock.get(), impl.reactor_data_))
{
ec = asio::error_code(err,
asio::error::get_system_category());
return ec;
}
impl.socket_ = sock.release();
impl.flags_ = 0;
impl.protocol_ = protocol;
ec = asio::error_code();
return ec;
}
// Assign a native socket to a socket implementation.
asio::error_code assign(implementation_type& impl,
const protocol_type& protocol, const native_type& native_socket,
asio::error_code& ec)
{
if (is_open(impl))
{
ec = asio::error::already_open;
return ec;
}
if (int err = reactor_.register_descriptor(
native_socket, impl.reactor_data_))
{
ec = asio::error_code(err,
asio::error::get_system_category());
return ec;
}
impl.socket_ = native_socket;
impl.flags_ = 0;
impl.protocol_ = protocol;
ec = asio::error_code();
return ec;
}
// Determine whether the socket is open.
bool is_open(const implementation_type& impl) const
{
return impl.socket_ != invalid_socket;
}
// Destroy a socket implementation.
asio::error_code close(implementation_type& impl,
asio::error_code& ec)
{
if (is_open(impl))
{
reactor_.close_descriptor(impl.socket_, impl.reactor_data_);
if (impl.flags_ & implementation_type::non_blocking)
{
ioctl_arg_type non_blocking = 0;
asio::error_code ignored_ec;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ignored_ec);
impl.flags_ &= ~implementation_type::non_blocking;
}
if (socket_ops::close(impl.socket_, ec) == socket_error_retval)
return ec;
impl.socket_ = invalid_socket;
}
ec = asio::error_code();
return ec;
}
// Get the native socket representation.
native_type native(implementation_type& impl)
{
return impl.socket_;
}
// Cancel all operations associated with the socket.
asio::error_code cancel(implementation_type& impl,
asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
reactor_.cancel_ops(impl.socket_, impl.reactor_data_);
ec = asio::error_code();
return ec;
}
// Determine whether the socket is at the out-of-band data mark.
bool at_mark(const implementation_type& impl,
asio::error_code& ec) const
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return false;
}
asio::detail::ioctl_arg_type value = 0;
socket_ops::ioctl(impl.socket_, SIOCATMARK, &value, ec);
#if defined(ENOTTY)
if (ec.value() == ENOTTY)
ec = asio::error::not_socket;
#endif // defined(ENOTTY)
return ec ? false : value != 0;
}
// Determine the number of bytes available for reading.
std::size_t available(const implementation_type& impl,
asio::error_code& ec) const
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
asio::detail::ioctl_arg_type value = 0;
socket_ops::ioctl(impl.socket_, FIONREAD, &value, ec);
#if defined(ENOTTY)
if (ec.value() == ENOTTY)
ec = asio::error::not_socket;
#endif // defined(ENOTTY)
return ec ? static_cast<std::size_t>(0) : static_cast<std::size_t>(value);
}
// Bind the socket to the specified local endpoint.
asio::error_code bind(implementation_type& impl,
const endpoint_type& endpoint, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
socket_ops::bind(impl.socket_, endpoint.data(), endpoint.size(), ec);
return ec;
}
// Place the socket into the state where it will listen for new connections.
asio::error_code listen(implementation_type& impl, int backlog,
asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
socket_ops::listen(impl.socket_, backlog, ec);
return ec;
}
// Set a socket option.
template <typename Option>
asio::error_code set_option(implementation_type& impl,
const Option& option, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
if (option.level(impl.protocol_) == custom_socket_option_level
&& option.name(impl.protocol_) == enable_connection_aborted_option)
{
if (option.size(impl.protocol_) != sizeof(int))
{
ec = asio::error::invalid_argument;
}
else
{
if (*reinterpret_cast<const int*>(option.data(impl.protocol_)))
impl.flags_ |= implementation_type::enable_connection_aborted;
else
impl.flags_ &= ~implementation_type::enable_connection_aborted;
ec = asio::error_code();
}
return ec;
}
else
{
if (option.level(impl.protocol_) == SOL_SOCKET
&& option.name(impl.protocol_) == SO_LINGER)
{
impl.flags_ |= implementation_type::user_set_linger;
}
socket_ops::setsockopt(impl.socket_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), option.size(impl.protocol_), ec);
#if defined(__MACH__) && defined(__APPLE__) \
|| defined(__NetBSD__) || defined(__FreeBSD__) || defined(__OpenBSD__)
// To implement portable behaviour for SO_REUSEADDR with UDP sockets we
// need to also set SO_REUSEPORT on BSD-based platforms.
if (!ec && impl.protocol_.type() == SOCK_DGRAM
&& option.level(impl.protocol_) == SOL_SOCKET
&& option.name(impl.protocol_) == SO_REUSEADDR)
{
asio::error_code ignored_ec;
socket_ops::setsockopt(impl.socket_, SOL_SOCKET, SO_REUSEPORT,
option.data(impl.protocol_), option.size(impl.protocol_),
ignored_ec);
}
#endif
return ec;
}
}
// Set a socket option.
template <typename Option>
asio::error_code get_option(const implementation_type& impl,
Option& option, asio::error_code& ec) const
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
if (option.level(impl.protocol_) == custom_socket_option_level
&& option.name(impl.protocol_) == enable_connection_aborted_option)
{
if (option.size(impl.protocol_) != sizeof(int))
{
ec = asio::error::invalid_argument;
}
else
{
int* target = reinterpret_cast<int*>(option.data(impl.protocol_));
if (impl.flags_ & implementation_type::enable_connection_aborted)
*target = 1;
else
*target = 0;
option.resize(impl.protocol_, sizeof(int));
ec = asio::error_code();
}
return ec;
}
else
{
size_t size = option.size(impl.protocol_);
socket_ops::getsockopt(impl.socket_,
option.level(impl.protocol_), option.name(impl.protocol_),
option.data(impl.protocol_), &size, ec);
if (!ec)
option.resize(impl.protocol_, size);
return ec;
}
}
// Perform an IO control command on the socket.
template <typename IO_Control_Command>
asio::error_code io_control(implementation_type& impl,
IO_Control_Command& command, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
if (command.name() == static_cast<int>(FIONBIO))
{
// Flags are manipulated in a temporary variable so that the socket
// implementation is not updated unless the ioctl operation succeeds.
unsigned char new_flags = impl.flags_;
if (command.get())
new_flags |= implementation_type::user_set_non_blocking;
else
new_flags &= ~implementation_type::user_set_non_blocking;
// Perform ioctl on socket if the non-blocking state has changed.
if (!(impl.flags_ & implementation_type::non_blocking)
&& (new_flags & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec);
}
else if ((impl.flags_ & implementation_type::non_blocking)
&& !(new_flags & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 0;
socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec);
}
else
{
ec = asio::error_code();
}
// Update socket implementation's flags only if successful.
if (!ec)
impl.flags_ = new_flags;
}
else
{
socket_ops::ioctl(impl.socket_, command.name(),
static_cast<ioctl_arg_type*>(command.data()), ec);
}
return ec;
}
// Get the local endpoint.
endpoint_type local_endpoint(const implementation_type& impl,
asio::error_code& ec) const
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return endpoint_type();
}
endpoint_type endpoint;
std::size_t addr_len = endpoint.capacity();
if (socket_ops::getsockname(impl.socket_, endpoint.data(), &addr_len, ec))
return endpoint_type();
endpoint.resize(addr_len);
return endpoint;
}
// Get the remote endpoint.
endpoint_type remote_endpoint(const implementation_type& impl,
asio::error_code& ec) const
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return endpoint_type();
}
endpoint_type endpoint;
std::size_t addr_len = endpoint.capacity();
if (socket_ops::getpeername(impl.socket_, endpoint.data(), &addr_len, ec))
return endpoint_type();
endpoint.resize(addr_len);
return endpoint;
}
/// Disable sends or receives on the socket.
asio::error_code shutdown(implementation_type& impl,
socket_base::shutdown_type what, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
socket_ops::shutdown(impl.socket_, what, ec);
return ec;
}
// Send the given data to the peer.
template <typename ConstBufferSequence>
size_t send(implementation_type& impl, const ConstBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
ec = asio::error_code();
return 0;
}
// Send the data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_sent = socket_ops::send(impl.socket_, bufs, i, flags, ec);
// Check if operation succeeded.
if (bytes_sent >= 0)
return bytes_sent;
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_write(impl.socket_, ec) < 0)
return 0;
}
}
// Wait until data can be sent without blocking.
size_t send(implementation_type& impl, const null_buffers&,
socket_base::message_flags, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, ec);
return 0;
}
template <typename ConstBufferSequence, typename Handler>
class send_operation :
public handler_base_from_member<Handler>
{
public:
send_operation(socket_type socket, asio::io_service& io_service,
const ConstBufferSequence& buffers, socket_base::message_flags flags,
Handler handler)
: handler_base_from_member<Handler>(handler),
socket_(socket),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
flags_(flags)
{
}
bool perform(asio::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether the operation was successful.
if (ec)
{
bytes_transferred = 0;
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers_.begin();
typename ConstBufferSequence::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
}
// Send the data.
int bytes = socket_ops::send(socket_, bufs, i, flags_, ec);
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
bytes_transferred = (bytes < 0 ? 0 : bytes);
return true;
}
void complete(const asio::error_code& ec,
std::size_t bytes_transferred)
{
io_service_.post(bind_handler(this->handler_, ec, bytes_transferred));
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
ConstBufferSequence buffers_;
socket_base::message_flags flags_;
};
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_send(implementation_type& impl, const ConstBufferSequence& buffers,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
if (impl.protocol_.type() == SOCK_STREAM)
{
// Determine total size of buffers.
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (total_buffer_size == 0)
{
this->get_io_service().post(bind_handler(handler,
asio::error_code(), 0));
return;
}
}
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
if (!(impl.flags_ & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
asio::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec, 0));
return;
}
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_write_op(impl.socket_, impl.reactor_data_,
send_operation<ConstBufferSequence, Handler>(
impl.socket_, this->get_io_service(), buffers, flags, handler));
}
}
template <typename Handler>
class null_buffers_operation :
public handler_base_from_member<Handler>
{
public:
null_buffers_operation(asio::io_service& io_service, Handler handler)
: handler_base_from_member<Handler>(handler),
work_(io_service)
{
}
bool perform(asio::error_code&,
std::size_t& bytes_transferred)
{
bytes_transferred = 0;
return true;
}
void complete(const asio::error_code& ec,
std::size_t bytes_transferred)
{
work_.get_io_service().post(bind_handler(
this->handler_, ec, bytes_transferred));
}
private:
asio::io_service::work work_;
};
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler>
void async_send(implementation_type& impl, const null_buffers&,
socket_base::message_flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
reactor_.start_write_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
// Send a datagram to the specified endpoint. Returns the number of bytes
// sent.
template <typename ConstBufferSequence>
size_t send_to(implementation_type& impl, const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers.begin();
typename ConstBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
}
// Send the data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_sent = socket_ops::sendto(impl.socket_, bufs, i, flags,
destination.data(), destination.size(), ec);
// Check if operation succeeded.
if (bytes_sent >= 0)
return bytes_sent;
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_write(impl.socket_, ec) < 0)
return 0;
}
}
// Wait until data can be sent without blocking.
size_t send_to(implementation_type& impl, const null_buffers&,
socket_base::message_flags, const endpoint_type&,
asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_write(impl.socket_, ec);
return 0;
}
template <typename ConstBufferSequence, typename Handler>
class send_to_operation :
public handler_base_from_member<Handler>
{
public:
send_to_operation(socket_type socket, asio::io_service& io_service,
const ConstBufferSequence& buffers, const endpoint_type& endpoint,
socket_base::message_flags flags, Handler handler)
: handler_base_from_member<Handler>(handler),
socket_(socket),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
destination_(endpoint),
flags_(flags)
{
}
bool perform(asio::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether the operation was successful.
if (ec)
{
bytes_transferred = 0;
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename ConstBufferSequence::const_iterator iter = buffers_.begin();
typename ConstBufferSequence::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::const_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<const void*>(buffer),
asio::buffer_size(buffer));
}
// Send the data.
int bytes = socket_ops::sendto(socket_, bufs, i, flags_,
destination_.data(), destination_.size(), ec);
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
bytes_transferred = (bytes < 0 ? 0 : bytes);
return true;
}
void complete(const asio::error_code& ec,
std::size_t bytes_transferred)
{
io_service_.post(bind_handler(this->handler_, ec, bytes_transferred));
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
ConstBufferSequence buffers_;
endpoint_type destination_;
socket_base::message_flags flags_;
};
// Start an asynchronous send. The data being sent must be valid for the
// lifetime of the asynchronous operation.
template <typename ConstBufferSequence, typename Handler>
void async_send_to(implementation_type& impl,
const ConstBufferSequence& buffers,
const endpoint_type& destination, socket_base::message_flags flags,
Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
if (!(impl.flags_ & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
asio::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec, 0));
return;
}
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_write_op(impl.socket_, impl.reactor_data_,
send_to_operation<ConstBufferSequence, Handler>(
impl.socket_, this->get_io_service(), buffers,
destination, flags, handler));
}
}
// Start an asynchronous wait until data can be sent without blocking.
template <typename Handler>
void async_send_to(implementation_type& impl, const null_buffers&,
socket_base::message_flags, const endpoint_type&, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
reactor_.start_write_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
// Receive some data from the peer. Returns the number of bytes received.
template <typename MutableBufferSequence>
size_t receive(implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (impl.protocol_.type() == SOCK_STREAM && total_buffer_size == 0)
{
ec = asio::error_code();
return 0;
}
// Receive some data.
for (;;)
{
// Try to complete the operation without blocking.
int bytes_recvd = socket_ops::recv(impl.socket_, bufs, i, flags, ec);
// Check if operation succeeded.
if (bytes_recvd > 0)
return bytes_recvd;
// Check for EOF.
if (bytes_recvd == 0 && impl.protocol_.type() == SOCK_STREAM)
{
ec = asio::error::eof;
return 0;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_, ec) < 0)
return 0;
}
}
// Wait until data can be received without blocking.
size_t receive(implementation_type& impl, const null_buffers&,
socket_base::message_flags, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, ec);
return 0;
}
template <typename MutableBufferSequence, typename Handler>
class receive_operation :
public handler_base_from_member<Handler>
{
public:
receive_operation(socket_type socket, int protocol_type,
asio::io_service& io_service,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, Handler handler)
: handler_base_from_member<Handler>(handler),
socket_(socket),
protocol_type_(protocol_type),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
flags_(flags)
{
}
bool perform(asio::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether the operation was successful.
if (ec)
{
bytes_transferred = 0;
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers_.begin();
typename MutableBufferSequence::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
}
// Receive some data.
int bytes = socket_ops::recv(socket_, bufs, i, flags_, ec);
if (bytes == 0 && protocol_type_ == SOCK_STREAM)
ec = asio::error::eof;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
bytes_transferred = (bytes < 0 ? 0 : bytes);
return true;
}
void complete(const asio::error_code& ec,
std::size_t bytes_transferred)
{
io_service_.post(bind_handler(this->handler_, ec, bytes_transferred));
}
private:
socket_type socket_;
int protocol_type_;
asio::io_service& io_service_;
asio::io_service::work work_;
MutableBufferSequence buffers_;
socket_base::message_flags flags_;
};
// Start an asynchronous receive. The buffer for the data being received
// must be valid for the lifetime of the asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive(implementation_type& impl,
const MutableBufferSequence& buffers,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
if (impl.protocol_.type() == SOCK_STREAM)
{
// Determine total size of buffers.
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
size_t total_buffer_size = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
total_buffer_size += asio::buffer_size(buffer);
}
// A request to receive 0 bytes on a stream socket is a no-op.
if (total_buffer_size == 0)
{
this->get_io_service().post(bind_handler(handler,
asio::error_code(), 0));
return;
}
}
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
if (!(impl.flags_ & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
asio::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec, 0));
return;
}
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
if (flags & socket_base::message_out_of_band)
{
reactor_.start_except_op(impl.socket_, impl.reactor_data_,
receive_operation<MutableBufferSequence, Handler>(
impl.socket_, impl.protocol_.type(),
this->get_io_service(), buffers, flags, handler));
}
else
{
reactor_.start_read_op(impl.socket_, impl.reactor_data_,
receive_operation<MutableBufferSequence, Handler>(
impl.socket_, impl.protocol_.type(),
this->get_io_service(), buffers, flags, handler));
}
}
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive(implementation_type& impl, const null_buffers&,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else if (flags & socket_base::message_out_of_band)
{
reactor_.start_except_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler));
}
else
{
reactor_.start_read_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
// Receive a datagram with the endpoint of the sender. Returns the number of
// bytes received.
template <typename MutableBufferSequence>
size_t receive_from(implementation_type& impl,
const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint, socket_base::message_flags flags,
asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers.begin();
typename MutableBufferSequence::const_iterator end = buffers.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
}
// Receive some data.
for (;;)
{
// Try to complete the operation without blocking.
std::size_t addr_len = sender_endpoint.capacity();
int bytes_recvd = socket_ops::recvfrom(impl.socket_, bufs, i, flags,
sender_endpoint.data(), &addr_len, ec);
// Check if operation succeeded.
if (bytes_recvd > 0)
{
sender_endpoint.resize(addr_len);
return bytes_recvd;
}
// Check for EOF.
if (bytes_recvd == 0 && impl.protocol_.type() == SOCK_STREAM)
{
ec = asio::error::eof;
return 0;
}
// Operation failed.
if ((impl.flags_ & implementation_type::user_set_non_blocking)
|| (ec != asio::error::would_block
&& ec != asio::error::try_again))
return 0;
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_, ec) < 0)
return 0;
}
}
// Wait until data can be received without blocking.
size_t receive_from(implementation_type& impl, const null_buffers&,
endpoint_type& sender_endpoint, socket_base::message_flags,
asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return 0;
}
// Wait for socket to become ready.
socket_ops::poll_read(impl.socket_, ec);
// Reset endpoint since it can be given no sensible value at this time.
sender_endpoint = endpoint_type();
return 0;
}
template <typename MutableBufferSequence, typename Handler>
class receive_from_operation :
public handler_base_from_member<Handler>
{
public:
receive_from_operation(socket_type socket, int protocol_type,
asio::io_service& io_service,
const MutableBufferSequence& buffers, endpoint_type& endpoint,
socket_base::message_flags flags, Handler handler)
: handler_base_from_member<Handler>(handler),
socket_(socket),
protocol_type_(protocol_type),
io_service_(io_service),
work_(io_service),
buffers_(buffers),
sender_endpoint_(endpoint),
flags_(flags)
{
}
bool perform(asio::error_code& ec,
std::size_t& bytes_transferred)
{
// Check whether the operation was successful.
if (ec)
{
bytes_transferred = 0;
return true;
}
// Copy buffers into array.
socket_ops::buf bufs[max_buffers];
typename MutableBufferSequence::const_iterator iter = buffers_.begin();
typename MutableBufferSequence::const_iterator end = buffers_.end();
size_t i = 0;
for (; iter != end && i < max_buffers; ++iter, ++i)
{
asio::mutable_buffer buffer(*iter);
socket_ops::init_buf(bufs[i],
asio::buffer_cast<void*>(buffer),
asio::buffer_size(buffer));
}
// Receive some data.
std::size_t addr_len = sender_endpoint_.capacity();
int bytes = socket_ops::recvfrom(socket_, bufs, i, flags_,
sender_endpoint_.data(), &addr_len, ec);
if (bytes == 0 && protocol_type_ == SOCK_STREAM)
ec = asio::error::eof;
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
sender_endpoint_.resize(addr_len);
bytes_transferred = (bytes < 0 ? 0 : bytes);
return true;
}
void complete(const asio::error_code& ec,
std::size_t bytes_transferred)
{
io_service_.post(bind_handler(this->handler_, ec, bytes_transferred));
}
private:
socket_type socket_;
int protocol_type_;
asio::io_service& io_service_;
asio::io_service::work work_;
MutableBufferSequence buffers_;
endpoint_type& sender_endpoint_;
socket_base::message_flags flags_;
};
// Start an asynchronous receive. The buffer for the data being received and
// the sender_endpoint object must both be valid for the lifetime of the
// asynchronous operation.
template <typename MutableBufferSequence, typename Handler>
void async_receive_from(implementation_type& impl,
const MutableBufferSequence& buffers, endpoint_type& sender_endpoint,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
if (!(impl.flags_ & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
asio::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec, 0));
return;
}
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_read_op(impl.socket_, impl.reactor_data_,
receive_from_operation<MutableBufferSequence, Handler>(
impl.socket_, impl.protocol_.type(), this->get_io_service(),
buffers, sender_endpoint, flags, handler));
}
}
// Wait until data can be received without blocking.
template <typename Handler>
void async_receive_from(implementation_type& impl,
const null_buffers&, endpoint_type& sender_endpoint,
socket_base::message_flags flags, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor, 0));
}
else
{
// Reset endpoint since it can be given no sensible value at this time.
sender_endpoint = endpoint_type();
if (flags & socket_base::message_out_of_band)
{
reactor_.start_except_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler));
}
else
{
reactor_.start_read_op(impl.socket_, impl.reactor_data_,
null_buffers_operation<Handler>(this->get_io_service(), handler),
false);
}
}
}
// Accept a new connection.
template <typename Socket>
asio::error_code accept(implementation_type& impl,
Socket& peer, endpoint_type* peer_endpoint, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
// We cannot accept a socket that is already open.
if (peer.is_open())
{
ec = asio::error::already_open;
return ec;
}
// Accept a socket.
for (;;)
{
// Try to complete the operation without blocking.
asio::error_code ec;
socket_holder new_socket;
std::size_t addr_len = 0;
if (peer_endpoint)
{
addr_len = peer_endpoint->capacity();
new_socket.reset(socket_ops::accept(impl.socket_,
peer_endpoint->data(), &addr_len, ec));
}
else
{
new_socket.reset(socket_ops::accept(impl.socket_, 0, 0, ec));
}
// Check if operation succeeded.
if (new_socket.get() >= 0)
{
if (peer_endpoint)
peer_endpoint->resize(addr_len);
peer.assign(impl.protocol_, new_socket.get(), ec);
if (!ec)
new_socket.release();
return ec;
}
// Operation failed.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
{
if (impl.flags_ & implementation_type::user_set_non_blocking)
return ec;
// Fall through to retry operation.
}
else if (ec == asio::error::connection_aborted)
{
if (impl.flags_ & implementation_type::enable_connection_aborted)
return ec;
// Fall through to retry operation.
}
#if defined(EPROTO)
else if (ec.value() == EPROTO)
{
if (impl.flags_ & implementation_type::enable_connection_aborted)
return ec;
// Fall through to retry operation.
}
#endif // defined(EPROTO)
else
return ec;
// Wait for socket to become ready.
if (socket_ops::poll_read(impl.socket_, ec) < 0)
return ec;
}
}
template <typename Socket, typename Handler>
class accept_operation :
public handler_base_from_member<Handler>
{
public:
accept_operation(socket_type socket, asio::io_service& io_service,
Socket& peer, const protocol_type& protocol,
endpoint_type* peer_endpoint, bool enable_connection_aborted,
Handler handler)
: handler_base_from_member<Handler>(handler),
socket_(socket),
io_service_(io_service),
work_(io_service),
peer_(peer),
protocol_(protocol),
peer_endpoint_(peer_endpoint),
enable_connection_aborted_(enable_connection_aborted)
{
}
bool perform(asio::error_code& ec, std::size_t&)
{
// Check whether the operation was successful.
if (ec)
return true;
// Accept the waiting connection.
socket_holder new_socket;
std::size_t addr_len = 0;
if (peer_endpoint_)
{
addr_len = peer_endpoint_->capacity();
new_socket.reset(socket_ops::accept(socket_,
peer_endpoint_->data(), &addr_len, ec));
}
else
{
new_socket.reset(socket_ops::accept(socket_, 0, 0, ec));
}
// Check if we need to run the operation again.
if (ec == asio::error::would_block
|| ec == asio::error::try_again)
return false;
if (ec == asio::error::connection_aborted
&& !enable_connection_aborted_)
return false;
#if defined(EPROTO)
if (ec.value() == EPROTO && !enable_connection_aborted_)
return false;
#endif // defined(EPROTO)
// Transfer ownership of the new socket to the peer object.
if (!ec)
{
if (peer_endpoint_)
peer_endpoint_->resize(addr_len);
peer_.assign(protocol_, new_socket.get(), ec);
if (!ec)
new_socket.release();
}
return true;
}
void complete(const asio::error_code& ec, std::size_t)
{
io_service_.post(bind_handler(this->handler_, ec));
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
Socket& peer_;
protocol_type protocol_;
endpoint_type* peer_endpoint_;
bool enable_connection_aborted_;
};
// Start an asynchronous accept. The peer and peer_endpoint objects
// must be valid until the accept's handler is invoked.
template <typename Socket, typename Handler>
void async_accept(implementation_type& impl, Socket& peer,
endpoint_type* peer_endpoint, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor));
}
else if (peer.is_open())
{
this->get_io_service().post(bind_handler(handler,
asio::error::already_open));
}
else
{
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
if (!(impl.flags_ & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
asio::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec));
return;
}
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
reactor_.start_read_op(impl.socket_, impl.reactor_data_,
accept_operation<Socket, Handler>(
impl.socket_, this->get_io_service(),
peer, impl.protocol_, peer_endpoint,
(impl.flags_ & implementation_type::enable_connection_aborted) != 0,
handler));
}
}
// Connect the socket to the specified endpoint.
asio::error_code connect(implementation_type& impl,
const endpoint_type& peer_endpoint, asio::error_code& ec)
{
if (!is_open(impl))
{
ec = asio::error::bad_descriptor;
return ec;
}
// Perform the connect operation.
socket_ops::connect(impl.socket_,
peer_endpoint.data(), peer_endpoint.size(), ec);
if (ec != asio::error::in_progress
&& ec != asio::error::would_block)
{
// The connect operation finished immediately.
return ec;
}
// Wait for socket to become ready.
if (socket_ops::poll_connect(impl.socket_, ec) < 0)
return ec;
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (socket_ops::getsockopt(impl.socket_, SOL_SOCKET, SO_ERROR,
&connect_error, &connect_error_len, ec) == socket_error_retval)
return ec;
// Return the result of the connect operation.
ec = asio::error_code(connect_error,
asio::error::get_system_category());
return ec;
}
template <typename Handler>
class connect_operation :
public handler_base_from_member<Handler>
{
public:
connect_operation(socket_type socket,
asio::io_service& io_service, Handler handler)
: handler_base_from_member<Handler>(handler),
socket_(socket),
io_service_(io_service),
work_(io_service)
{
}
bool perform(asio::error_code& ec, std::size_t&)
{
// Check whether the operation was successful.
if (ec)
return true;
// Get the error code from the connect operation.
int connect_error = 0;
size_t connect_error_len = sizeof(connect_error);
if (socket_ops::getsockopt(socket_, SOL_SOCKET, SO_ERROR,
&connect_error, &connect_error_len, ec) == socket_error_retval)
return true;
// The connection failed so the handler will be posted with an error code.
if (connect_error)
{
ec = asio::error_code(connect_error,
asio::error::get_system_category());
return true;
}
return true;
}
void complete(const asio::error_code& ec, std::size_t)
{
io_service_.post(bind_handler(this->handler_, ec));
}
private:
socket_type socket_;
asio::io_service& io_service_;
asio::io_service::work work_;
};
// Start an asynchronous connect.
template <typename Handler>
void async_connect(implementation_type& impl,
const endpoint_type& peer_endpoint, Handler handler)
{
if (!is_open(impl))
{
this->get_io_service().post(bind_handler(handler,
asio::error::bad_descriptor));
return;
}
// Make socket non-blocking.
if (!(impl.flags_ & implementation_type::internal_non_blocking))
{
if (!(impl.flags_ & implementation_type::non_blocking))
{
ioctl_arg_type non_blocking = 1;
asio::error_code ec;
if (socket_ops::ioctl(impl.socket_, FIONBIO, &non_blocking, ec))
{
this->get_io_service().post(bind_handler(handler, ec));
return;
}
}
impl.flags_ |= implementation_type::internal_non_blocking;
}
// Start the connect operation. The socket is already marked as non-blocking
// so the connection will take place asynchronously.
asio::error_code ec;
if (socket_ops::connect(impl.socket_, peer_endpoint.data(),
peer_endpoint.size(), ec) == 0)
{
// The connect operation has finished successfully so we need to post the
// handler immediately.
this->get_io_service().post(bind_handler(handler,
asio::error_code()));
}
else if (ec == asio::error::in_progress
|| ec == asio::error::would_block)
{
// The connection is happening in the background, and we need to wait
// until the socket becomes writeable.
reactor_.start_connect_op(impl.socket_, impl.reactor_data_,
connect_operation<Handler>(impl.socket_,
this->get_io_service(), handler));
}
else
{
// The connect operation has failed, so post the handler immediately.
this->get_io_service().post(bind_handler(handler, ec));
}
}
private:
// The selector that performs event demultiplexing for the service.
Reactor& reactor_;
};
} // namespace detail
} // namespace asio
#include "asio/detail/pop_options.hpp"
#endif // ASIO_DETAIL_REACTIVE_SOCKET_SERVICE_HPP